Influence and its mechanism of allogeneic dermal papilla cells on the wound healing of full-thickness skin defects in mice
-
摘要:
目的 探索异体毛乳头细胞(DPC)对小鼠全层皮肤缺损创面愈合的影响及其机制。 方法 该研究为实验研究。利用显微解剖结合胶原酶消化法自5只6周龄雄性C57BL/6J小鼠触须毛囊中提取DPC并成功鉴定。将18只8周龄雄性C57BL/6J小鼠按照随机数字表法分为磷酸盐缓冲液(PBS)组及DPC组(每组9只小鼠),在所有小鼠背部创建全层皮肤缺损创面模型。分别于伤后2、4、6 d,通过创面周围皮下注射给予DPC组小鼠含1×106个第4代DPC的细胞悬液100 μL、PBS组小鼠等体积的PBS。伤后3、7、10、14 d,观察2组小鼠创面愈合情况及毛发生长情况并测量创面剩余面积;另测量2组小鼠伤后14 d创面毛发覆盖面积。伤后14 d,收集2组小鼠创面组织标本,行苏木精-伊红染色观察新生毛囊情况并计数,行Masson染色观察真皮层胶原沉积情况并测量胶原沉积面积,采用免疫荧光法检测Wnt/β连环蛋白信号通路相关分子β连环蛋白、淋巴增强结合因子1(Lef1)的蛋白表达,分别采用蛋白质印迹法和实时荧光定量反转录PCR法检测β连环蛋白、Lef1的蛋白和mRNA表达。各实验样本数均为3。 结果 与PBS组相比,DPC组小鼠伤后各时间点创面再上皮化速度加快,且在伤后10、14 d可见更多毛发生长。伤后7、10、14 d,DPC组小鼠创面剩余面积分别为(13.92±2.90)、(3.69±1.78)、(1.09±0.14)mm2,分别明显小于PBS组的(26.19±2.06)、(10.84±3.59)、(6.75±2.11)mm2(t值分别为5.85、3.09、4.63,P值均<0.05)。伤后14 d,DPC组小鼠创面毛发覆盖面积为(62±7)mm2,明显大于PBS组的(35±6)mm2(t=2.89,P<0.05)。伤后14 d,与PBS组比较,DPC组小鼠创面组织中新生毛囊数量明显增多(t=5.43,P<0.05),真皮层胶原沉积面积明显缩小(t=3.56,P<0.05)。伤后14 d,免疫荧光法和蛋白质印迹法检测均显示,DPC组小鼠创面组织中β连环蛋白(t值分别为5.49、4.25,P值均<0.05)和Lef1(t值分别为7.50、11.54,P值均<0.05)的蛋白表达均明显高于PBS组;DPC组小鼠创面组织中β连环蛋白和Lef1的mRNA表达均明显高于PBS组(t值分别为7.68、9.67,P<0.05)。 结论 DPC通过激活Wnt/β连环蛋白信号通路加快小鼠全层皮肤缺损创面再上皮化,并促进创面愈合过程中的毛囊再生。 -
关键词:
- 创伤和损伤 /
- 伤口愈合 /
- 淋巴样增强子结合因子1 /
- 胶原 /
- 毛囊再生 /
- 毛乳头细胞 /
- Wnt/β连环蛋白信号通路
Abstract:Objective To explore the influence and its mechanism of allogeneic dermal papilla cells (DPCs) on the wound healing of full-thickness skin defects in mice. Methods This study was an experimental study. DPCs were isolated from the whisker follicles of five 6-week-old male C57BL/6J mice by combining microdissection with collagenase digestion and were successfully identified. Eighteen 8-week-old male C57BL/6J mice were divided into phosphate buffer solution (PBS) group and DPC group according to the random number table, with 9 mice in each group, and the full-thickness skin defect wound model was created on the back of all mice. On day 2, 4, and 6 after injury, the mice in DPC group were administered 100 μL of cell suspension containing 1×106 DPCs of the 4th passage by subcutaneous injection around the wound, and the mice in PBS group was administered an equal volume of PBS. On day 3, 7, 10, and 14 after injury, the wound healing and hair growth of mice in two groups were observed, and the residual wound area was measured, and the hair coverage area on the wound of mice in two groups was measured on day 14 after injury. On day 14 after injury, the wound tissue samples of mice in two groups were collected. Hematoxylin-eosin staining was performed to observe the condition of newborn hair follicles and the number was counted, Masson staining was performed to observe the collagen deposition in the dermis and the collagen deposition area was measured, the immunofluorescence method was used to detect the protein expressions of Wnt/β-catenin signaling pathway related molecules β-catenin and lymphoid enhancer binding factor 1 (Lef1), and Western blotting and real-time fluorescence quantitative reverse transcription polymerase chain reaction were used to detect the protein and mRNA expressions of β-catenin and Lef1, respectively. The number of samples in each experiment was 3. Results Compared with those in PBS group, the mice in DPC group had accelerated wound re-epithelialization at each time point after injury, and more hair growth on day 10 and 14 after injury. On day 7, 10, and 14 after injury, the residual wound areas of mice in DPC group were (13.92±2.90), (3.69±1.78), and (1.09±0.14) mm2, respectively, which were significantly smaller than (26.19±2.06), (10.84±3.59), and (6.75±2.11) mm2 in PBS group, respectively (with t values of 5.85, 3.09, and 4.63, respectively, P values all <0.05). On day 14 after injury, the hair coverage area on the wound of mice in DPC group was (62±7) mm2, which was significantly larger than (35±6) mm2 in PBS group (t=2.89, P<0.05). On day 14 after injury, compared with those in PBS group, the number of newborn hair follicles in the wound tissue of mice in DPC group was significantly increased (t=5.43, P<0.05), and the dermal collagen deposition area was significantly reduced (t=3.56, P<0.05). On day 14 after injury, both the immunofluorescence method and the Western blotting detection showed that the protein expressions of β-catenin (with t values of 5.49 and 4.25, respectively, P values all <0.05) and Lef1 (with t values of 7.50 and 11.54, respectively, P values all <0.05) in the wound tissue of mice in DPC group were significantly higher than those in PBS group; the mRNA expressions of β-catenin and Lef1 in the wound tissue of mice in DPC group were significantly higher than those in PBS group (with t values of 7.68 and 9.67, respectively, P<0.05). Conclusions DPCs can accelerate the re-epithelialization of full-thickness skin defect wounds in mice by activating Wnt/β-catenin signaling pathway and promote hair follicle regeneration during the process of wound healing. -
参考文献
(38) [1] HsuYC,FuchsE.Building and maintaining the skin[J].Cold Spring Harb Perspect Biol,2022,14(7):a040840.DOI: 10.1101/cshperspect.a040840. [2] ZhangB,ChenT.Local and systemic mechanisms that control the hair follicle stem cell niche[J].Nat Rev Mol Cell Biol,2024,25(2):87-100.DOI: 10.1038/s41580-023-00662-3. [3] YangG,ChenH,ChenQ,et al.Injury-induced interleukin-1 alpha promotes Lgr5 hair follicle stem cells de novo regeneration and proliferation via regulating regenerative microenvironment in mice[J].Inflamm Regen,2023,43(1):14.DOI: 10.1186/s41232-023-00265-7. [4] MonavarianM,KaderS,MoeinzadehS,et al.Regenerative scar-free skin wound healing[J].Tissue Eng Part B Rev,2019,25(4):294-311.DOI: 10.1089/ten.TEB.2018.0350. [5] ParkS.Hair follicle morphogenesis during embryogenesis, neogenesis, and organogenesis[J].Front Cell Dev Biol,2022,10:933370.DOI: 10.3389/fcell.2022.933370. [6] AamarE,Avigad LaronE,AsaadW,et al.Hair-follicle mesenchymal stem cell activity during homeostasis and wound healing[J].J Invest Dermatol,2021,141(12):2797-2807.e6.DOI: 10.1016/j.jid.2021.05.023. [7] 戴娇娇,王玲,邱海洋,等.自体毛囊单位提取移植术治疗烧伤后小面积继发性瘢痕秃发的临床效果[J].中华烧伤与创面修复杂志,2022,38(6):532-537.DOI: 10.3760/cma.j.cn501120-20210224-00064. [8] LiuZ,HuangJ,KangD,et al.Microenvironmental reprogramming of human dermal papilla cells for hair follicle tissue engineering[J].Acta Biomater,2023,165:31-49.DOI: 10.1016/j.actbio.2022.11.004. [9] NgKJ,LimJ,TanYN,et al.Sox2 in the dermal papilla regulates hair follicle pigmentation[J].Cell Rep,2022,40(3):111100.DOI: 10.1016/j.celrep.2022.111100. [10] JiS,ZhuZ,SunX,et al.Functional hair follicle regeneration: an updated review[J].Signal Transduct Target Ther,2021,6(1):66.DOI: 10.1038/s41392-020-00441-y. [11] WangB,LiuXM,LiuZN,et al.Human hair follicle-derived mesenchymal stem cells: isolation, expansion, and differentiation[J].World J Stem Cells,2020,12(6):462-470.DOI: 10.4252/wjsc.v12.i6.462. [12] DuL,GanY,ZhengB,et al.An optimized force-triggered density gradient sedimentation method for isolation of pelage follicle dermal papilla cells from neonatal mouse skin[J].Stem Cell Res Ther,2023,14(1):140.DOI: 10.1186/s13287-023-03343-2. [13] ZhengB,YangL,FengS,et al.Organoid‐loaded cryomicroneedles for biomimic hair regeneration[J].Advanced Functional Materials,2024,34(3):2304950.1-2304950.21.DOI: 10.1002/adfm.202304950. [14] 巫琦松,肖顺娥,魏在荣.毛囊及毛囊源性细胞促进创面愈合的研究进展[J].中国美容整形外科杂志,2020,31(1):59-62.DOI: 10.3969/j.issn.1673-7040.2020.01.018. [15] OakA,CotsarelisG.Wound-induced hair neogenesis: a portal to the development of new therapies for hair loss and wound regeneration[J].Cold Spring Harb Perspect Biol,2023,15(2):a041239.DOI: 10.1101/cshperspect.a041239. [16] LimC,LimJ,ChoiS.Wound-induced hair follicle neogenesis as a promising approach for hair regeneration[J].Mol Cells,2023,46(10):573-578.DOI: 10.14348/molcells.2023.0071. [17] XueY,LimCH,PlikusMV,et al.Wound-induced hair neogenesis model[J].J Invest Dermatol,2022,142(10):2565-2569.DOI: 10.1016/j.jid.2022.07.013. [18] MaoMQ,JingJ,MiaoYJ,et al.Epithelial-mesenchymal interaction in hair regeneration and skin wound healing[J].Front Med (Lausanne),2022,9:863786.DOI: 10.3389/fmed.2022.863786. [19] YangL,MiaoY,LiuY,et al.Regenerating hair in prevascularized tissue space formed by a controllable foreign body reaction[J].Advanced Functional Materials,2021,31(8):2007483. DOI: 10.1002/adfm.202007483. [20] KangD,LiuZ,QianC,et al.3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration[J].Acta Biomater,2023,165:19-30.DOI: 10.1016/j.actbio.2022.03.011. [21] PetersonA,NairLS.Hair follicle stem cells for tissue regeneration[J].Tissue Eng Part B Rev,2022,28(4):695-706.DOI: 10.1089/ten.TEB.2021.0098. [22] GanY,WangH,DuL,et al.Cellular heterogeneity facilitates the functional differences between hair follicle dermal sheath cells and dermal papilla cells: a new classification system for mesenchymal cells within the hair follicle niche[J].Stem Cell Rev Rep,2022,18(6):2016-2027.DOI: 10.1007/s12015-022-10411-2. [23] ChoiS,YoonM,ChoiKY.Approaches for regenerative healing of cutaneous wound with an emphasis on strategies activating the Wnt/β-catenin pathway[J].Adv Wound Care (New Rochelle),2022,11(2):70-86.DOI: 10.1089/wound.2020.1284. [24] 伍倩,谭晓宇,王怡佳,等.Wnt/β连环蛋白信号通路在体表创面愈合中的作用机制研究进展[J].中华烧伤与创面修复杂志,2023,39(2):190-195.DOI: 10.3760/cma.j.cn501225-20220816-00348. [25] BejaouiM,VillarealMO,IsodaH.β-catenin-mediated hair growth induction effect of 3,4,5-tri-O-caffeoylquinic acid[J].Aging (Albany NY),2019,11(12):4216-4237.DOI: 10.18632/aging.102048. [26] WuZ,ZhuY,LiuH,et al.Wnt10b promotes hair follicles growth and dermal papilla cells proliferation via Wnt/β-Catenin signaling pathway in Rex rabbits[J].Biosci Rep,2020,40(2):BSR20191248.DOI: 10.1042/BSR20191248. [27] PhanQM,FineGM,SalzL,et al.Lef1 expression in fibroblasts maintains developmental potential in adult skin to regenerate wounds[J].Elife,2020,9:e60066.DOI: 10.7554/eLife.60066. [28] HaoYH,Lafita-NavarroMC,ZachariasL,et al.Induction of LEF1 by MYC activates the WNT pathway and maintains cell proliferation[J].Cell Commun Signal,2019,17(1):129.DOI: 10.1186/s12964-019-0444-1. [29] MascharakS,TalbottHE,JanuszykM,et al.Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing[J].Cell Stem Cell,2022,29(2):315-327.e6.DOI: 10.1016/j.stem.2021.12.011. [30] 刘琰,刘欣盈.细胞治疗与创面修复[J].中华烧伤与创面修复杂志,2024,40(3):221-229.DOI: 10.3760/cma.j.cn501225-20240108-00009. [31] HassanshahiA,HassanshahiM,KhabbaziS,et al.Adipose-derived stem cells for wound healing[J].J Cell Physiol,2019,234(6):7903-7914.DOI: 10.1002/jcp.27922. [32] LimCH,SunQ,RattiK,et al.Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing[J].Nat Commun,2018,9(1):4903.DOI: 10.1038/s41467-018-07142-9. [33] MadaanA,VermaR,SinghAT,et al.Review of hair follicle dermal papilla cells as in vitro screening model for hair growth[J].Int J Cosmet Sci,2018,40(5):429-450.DOI: 10.1111/ics.12489. [34] ZhangL,WangWH,JinJY,et al.Induction of hair follicle neogenesis with cultured mouse dermal papilla cells in de novo regenerated skin tissues[J].J Tissue Eng Regen Med,2019,13(9):1641-1650.DOI: 10.1002/term.2918. [35] XingF,YiWJ,MiaoF,et al.Baicalin increases hair follicle development by increasing canonical Wnt/β-catenin signaling and activating dermal papillar cells in mice[J].Int J Mol Med,2018,41(4):2079-2085.DOI: 10.3892/ijmm.2018.3391. [36] XiaoS,HuZ,JiangJ,et al.Neonatal murine skin-derived cells transplanted using a mini-chamber model produce robust and normal hair[J].J Tissue Eng Regen Med,2016,10(5):E286-293.DOI: 10.1002/term.1802. [37] LiJ,ZhaoB,DaiY,et al.Exosomes derived from dermal papilla cells mediate hair follicle stem cell proliferation through the Wnt3a/β-catenin signaling pathway[J].Oxid Med Cell Longev,2022,2022:9042345.DOI: 10.1155/2022/9042345. [38] ZhouL,WangH,JingJ,et al.Regulation of hair follicle development by exosomes derived from dermal papilla cells[J].Biochem Biophys Res Commun,2018,500(2):325-332.DOI: 10.1016/j.bbrc.2018.04.067. -
图 3 2组全层皮肤缺损小鼠伤后14 d创面组织中新生毛囊及胶原沉积情况。3A、3B.分别为PBS组、DPC组新生毛囊情况,图3B中新生毛囊的数量明显多于图3A 苏木精-伊红×10;3C、3D.分别为PBS组、DPC组胶原沉积情况,图3C真皮层新生胶原的含量明显多于图3D Masson×10;3E、3F.分别为图3A、3B中方框中图形的放大图,图3E中无新生毛囊结构形成,而图3F中可见新生毛囊结构形成 苏木精-伊红×100;3G、3H.分别为图3C、3D中方框中图形的放大图,图3G中胶原排列致密、紊乱,图3H中胶原排列疏松 Masson ×100
注:分别于伤后2、4、6 d,通过创面周围皮下注射给予毛乳头细胞(DPC)组小鼠DPC、磷酸盐缓冲液(PBS)组小鼠PBS
图 4 2组全层皮肤缺损小鼠伤后14 d创面组织中β连环蛋白与Lef1的蛋白表达情况。4A、4B.分别为PBS组、DPC组β连环蛋白荧光表达情况,图4B中β连环蛋白荧光强度明显强于图4A Alexa Fluor 594-4',6-二脒基-2-苯基吲哚×100;4C、4D.分别为PBS组、DPC组Lef1荧光表达情况,图4D中Lef1荧光强度明显强于图4C Alexa Fluor 488-4',6-二脒基-2-苯基吲哚×100
注:分别于伤后2、4、6 d,通过创面周围皮下注射给予毛乳头细胞(DPC)组小鼠DPC、磷酸盐缓冲液(PBS)组小鼠PBS;Lef1为淋巴增强结合因子1;Lef1阳性染色为绿色,β连环蛋白阳性染色为红色,细胞核阳性染色为蓝色
Table 1. 采用实时荧光定量反转录PCR法检测细胞因子mRNA表达的引物序列与产物大小
引物名称 引物序列(5'→3') 产物大小(bp) β连环蛋白 上游:GTGGTCATCGCCACCTTAATA 101 下游:TTCTCGCTGTTGGAGTTCAG 淋巴增强结合因子1 上游:TCTGCTGACATTTGCCTCTAC 103 下游:GCTGGTGGATGGCTCTTATATT 3-磷酸甘油醛脱氢酶 上游:GGTGAAGGTCGGTGTGAACG 179 下游:CTCGCTCCTGGAAGATGGTG