[1] |
KalluriR,LeBleuVS.The biology, function, and biomedical applications of exosomes[J].Science,2020,367(6478):eaau6977.DOI: 10.1126/science.aau6977.
|
[2] |
NelemansLC,GurevichL.Drug delivery with polymeric nanocarriers-cellular uptake mechanisms[J].Materials (Basel),2020,13(2):366.DOI: 10.3390/ma13020366.
|
[3] |
ZhouM,HuangH,WangD,et al.Light-triggered PEGylation/dePEGylation of the nanocarriers for enhanced tumor penetration[J].Nano Lett,2019,19(6):3671-3675.DOI: 10.1021/acs.nanolett.9b00737.
|
[4] |
KimMK, ChoiYC, ChoSH, et al. The antioxidant effect of small extracellular vesicles derived from aloe vera peels for wound healing[J]. Tissue Eng Regen Med,2021,18(4):561-571.DOI: 10.1007/s13770-021-00367-8.
|
[5] |
SundaramK, MillerDP,KumarA, et al. Plant-derived exosomal nanoparticles inhibit pathogenicity of porphyromonas gingivalis[J]. iScience,2020,23(2):100869. DOI: 10.1016/j.isci.2020.100869.
|
[6] |
SongH, CanupBSB, NgoVL, et al. Internalization of garlic-derived nanovesicles on liver cells is triggered by interaction with CD98[J]. ACS Omega,2020,5(36):23118-23128.DOI: 10.1021/acsomega.0c02893.
|
[7] |
GudbergssonJM,JønssonK,SimonsenJB,et al.Systematic review of targeted extracellular vesicles for drug delivery - considerations on methodological and biological heterogeneity[J].J Control Release,2019,306:108-120.DOI: 10.1016/j.jconrel.2019.06.006.
|
[8] |
KalarikkalSP,SundaramGM.Edible plant-derived exosomal microRNAs: exploiting a cross-kingdom regulatory mechanism for targeting SARS-CoV-2[J].Toxicol Appl Pharmacol,2021,414:115425.DOI: 10.1016/j.taap.2021.115425.
|
[9] |
HalperinW,JensenWA.Ultrastructural changes during growth and embryogenesis in carrot cell cultures[J].J Ultrastruct Res,1967,18(3):428-443.DOI: 10.1016/s0022-5320(67)80128-x.
|
[10] |
AnQ,van BelAJ,HückelhovenR.Do plant cells secrete exosomes derived from multivesicular bodies?[J].Plant Signal Behav,2007,2(1):4-7.DOI: 10.4161/psb.2.1.3596.
|
[11] |
van NielG,D'AngeloG,RaposoG.Shedding light on the cell biology of extracellular vesicles[J].Nat Rev Mol Cell Biol,2018,19(4):213-228.DOI: 10.1038/nrm.2017.125.
|
[12] |
CrescitelliR,LässerC,LötvallJ.Isolation and characterization of extracellular vesicle subpopulations from tissues[J].Nat Protoc,2021,16(3):1548-1580.DOI: 10.1038/s41596-020-00466-1.
|
[13] |
DebbiL,GuoS,SafinaD,et al.Boosting extracellular vesicle secretion[J].Biotechnol Adv,2022,59:107983.DOI: 10.1016/j.biotechadv.2022.107983.
|
[14] |
JiangK,DongC,YinZ,et al.The critical role of exosomes in tumor biology[J].J Cell Biochem,2019,120(5):6820-6832.DOI: 10.1002/jcb.27813.
|
[15] |
JadliAS,BallasyN,EdalatP,et al.Inside(sight) of tiny communicator: exosome biogenesis, secretion, and uptake[J].Mol Cell Biochem,2020,467(1/2):77-94.DOI: 10.1007/s11010-020-03703-z.
|
[16] |
MovahedN, CabanillasDG, WanJ, et al. Turnip mosaic virus components are released into the extracellular space by vesicles in infected leaves[J]. Plant Physiol,2019,180(3):1375-1388.DOI: 10.1104/pp.19.00381.
|
[17] |
CuiY,GaoJ,HeY,et al.Plant extracellular vesicles[J].Protoplasma,2020,257(1):3-12.DOI: 10.1007/s00709-019-01435-6.
|
[18] |
张雪萍,鲁雨晴,张月倩,等.植物细胞外囊泡及其分析技术的进展[J].生物技术通报,2023,39(5):32-43.DOI: 10.13560/j.cnki.biotech.bull.1985.2022-1106.
|
[19] |
CongM,TanS,LiS,et al.Technology insight: plant-derived vesicles-how far from the clinical biotherapeutics and therapeutic drug carriers?[J].Adv Drug Deliv Rev,2022,182:114108.DOI: 10.1016/j.addr.2021.114108.
|
[20] |
杨梦楠,刘诗琦,张静,等.果蔬中外泌体样纳米颗粒的分离、表征和应用研究进展[J].食品科学,2021,42(9):355-361.DOI: 10.7506/spkx1002-6630-20200418-240.
|
[21] |
姚楠.植物脂质生物学进展[J].植物生理学报,2018,54(12):1747.DOI: 10.13592/j.cnki.ppj.2018.1008.
|
[22] |
王炎钦,董海涛.磷脂酸在植物中的第二信使功能[J].中国生物化学与分子生物学报,2006,22(9):697-703.DOI: 10.3969/j.issn.1007-7626.2006.09.003.
|
[23] |
Pérez-BermúdezP,BlesaJ,SorianoJM,et al.Extracellular vesicles in food: experimental evidence of their secretion in grape fruits[J].Eur J Pharm Sci,2017,98:40-50.DOI: 10.1016/j.ejps.2016.09.022.
|
[24] |
BeachA, ZhangHG, RatajczakMZ, et al. Exosomes: an overview of biogenesis, composition and role in ovarian cancer[J]. J Ovarian Res,2014,7:14.DOI: 10.1186/1757-2215-7-14.
|
[25] |
TakakuraH, NakaoT, NaritaT, et al. Citrus limon L.-derived nanovesicles show an inhibitory effect on cell growth in p53-inactivated colorectal cancer cells via the macropinocytosis pathway[J]. Biomedicines,2022,10(6):1352.DOI: 10.3390/biomedicines10061352.
|
[26] |
LiDF,TangQ,YangMF,et al.Plant-derived exosomal nanoparticles: potential therapeutic for inflammatory bowel disease[J].Nanoscale Adv,2023,5(14):3575-3588.DOI: 10.1039/d3na00093a.
|
[27] |
ZhaoZ, YuS, LiM, et al. Isolation of exosome-like nanoparticles and analysis of microRNAs derived from coconut water based on small RNA high-throughput sequencing[J]. J Agric Food Chem,2018,66(11):2749-2757.DOI: 10.1021/acs.jafc.7b05614.
|
[28] |
潘林思,王文彩,姚孟宇,等.植物源外泌体样纳米颗粒及其应用研究进展[J].中国中药杂志,2023,48(22):5977-5984.DOI: 10.19540/j.cnki.cjcmm.20230721.602.
|
[29] |
ZhangL, HeF, GaoL, et al. Engineering exosome-like nanovesicles derived from Asparagus cochinchinensis can inhibit the proliferation of hepatocellular carcinoma cells with better safety profile[J]. Int J Nanomedicine,2021,16:1575-1586.DOI: 10.2147/IJN.S293067.
|
[30] |
TengY,XuF,ZhangX,et al.Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12[J].Mol Ther,2021,29(8):2424-2440.DOI: 10.1016/j.ymthe.2021.05.005.
|
[31] |
CaoM,YanH,HanX,et al.Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth[J].J Immunother Cancer,2019,7(1):326.DOI: 10.1186/s40425-019-0817-4.
|
[32] |
ZhangL, LiS, CongM, et al. Lemon-derived extracellular vesicle-like nanoparticles block the progression of kidney stones by antagonizing endoplasmic reticulum stress in renal tubular cells[J]. Nano Lett,2023,23(4):1555-1563.DOI: 10.1021/acs.nanolett.2c05099.
|
[33] |
KalarikkalSP,PrasadD,KasiappanR,et al.A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes[J].Sci Rep,2020,10(1):4456.DOI: 10.1038/s41598-020-61358-8.
|
[34] |
LiuJ, LiW, BianY, et al. Garlic-derived exosomes regulate PFKFB3 expression to relieve liver dysfunction in high-fat diet-fed mice via macrophage-hepatocyte crosstalk[J]. Phytomedicine,2023,112:154679.DOI: 10.1016/j.phymed.2023.154679.
|
[35] |
YangY,WangY,WeiS,et al.Extracellular vesicles isolated by size-exclusion chromatography present suitability for RNomics analysis in plasma[J].J Transl Med,2021,19(1):104.DOI: 10.1186/s12967-021-02775-9.
|
[36] |
GuanS,YuH,YanG,et al.Characterization of urinary exosomes purified with size exclusion chromatography and ultracentrifugation[J].J Proteome Res,2020,19(6):2217-2225.DOI: 10.1021/acs.jproteome.9b00693.
|
[37] |
OtahalA,Kuten-PellaO,KramerK,et al.Functional repertoire of EV-associated miRNA profiles after lipoprotein depletion via ultracentrifugation and size exclusion chromatography from autologous blood products[J].Sci Rep,2021,11(1):5823.DOI: 10.1038/s41598-021-84234-5.
|
[38] |
FitzgeraldJ,LeonardP,DarcyE,et al.Immunoaffinity chromatography: concepts and applications[J].Methods Mol Biol,2017,1485:27-51.DOI: 10.1007/978-1-4939-6412-3_3.
|
[39] |
LiP,KaslanM,LeeSH,et al.Progress in exosome isolation techniques[J].Theranostics,2017,7(3):789-804.DOI: 10.7150/thno.18133.
|
[40] |
HeB,CaiQ,QiaoL,et al.RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles[J].Nat Plants,2021,7(3):342-352.DOI: 10.1038/s41477-021-00863-8.
|
[41] |
刘娜,杜盼盼,杨扬,等.基于微流控技术的外泌体分离方法的研究进展[J].生物技术通报,2019,35(1):207-213.DOI: 10.13560/j.cnki.biotech.bull.1985.2018-0571.
|
[42] |
ChenJ,LiP,ZhangT,et al.Review on strategies and technologies for exosome isolation and purification[J].Front Bioeng Biotechnol,2022,9:811971.DOI: 10.3389/fbioe.2021.811971.
|
[43] |
LiangsupreeT,MultiaE,RiekkolaML.Modern isolation and separation techniques for extracellular vesicles[J].J Chromatogr A,2021,1636:461773.DOI: 10.1016/j.chroma.2020.461773.
|
[44] |
PisitkunT,ShenRF,KnepperMA.Identification and proteomic profiling of exosomes in human urine[J].Proc Natl Acad Sci U S A,2004,101(36):13368-13373.DOI: 10.1073/pnas.0403453101.
|
[45] |
MaasSL,de VrijJ,van der VlistEJ,et al.Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics[J].J Control Release,2015,200:87-96.DOI: 10.1016/j.jconrel.2014.12.041.
|
[46] |
ThéryC,WitwerKW,AikawaE,et al.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J].J Extracell Vesicles,2018,7(1):1535750.DOI: 10.1080/20013078.2018.1535750.
|
[47] |
PospichalovaV,SvobodaJ,DaveZ,et al.Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer[J].J Extracell Vesicles,2015,4:25530.DOI: 10.3402/jev.v4.25530.
|
[48] |
WilkinsonHN,HardmanMJ.Wound healing: cellular mechanisms and pathological outcomes[J].Open Biol,2020,10(9):200223.DOI: 10.1098/rsob.200223.
|
[49] |
PeñaOA,MartinP.Cellular and molecular mechanisms of skin wound healing[J].Nat Rev Mol Cell Biol,2024,25(8):599-616.DOI: 10.1038/s41580-024-00715-1.
|
[50] |
PuglieseE,CoentroJQ,RaghunathM,et al.Wound healing and scar wars[J].Adv Drug Deliv Rev,2018,129:1-3.DOI: 10.1016/j.addr.2018.05.010.
|
[51] |
JiangD,GuoR,MachensHG,et al.Diversity of fibroblasts and their roles in wound healing[J].Cold Spring Harb Perspect Biol,2023,15(3):a041222.DOI: 10.1101/cshperspect.a041222.
|
[52] |
ChildsDR,MurthyAS.Overview of wound healing and management[J].Surg Clin North Am,2017,97(1):189-207.DOI: 10.1016/j.suc.2016.08.013.
|
[53] |
LandénNX,LiD,StåhleM.Transition from inflammation to proliferation: a critical step during wound healing[J].Cell Mol Life Sci,2016,73(20):3861-3885.DOI: 10.1007/s00018-016-2268-0.
|
[54] |
ScullyD,SfyriP,WilkinsonHN,et al.Optimising platelet secretomes to deliver robust tissue-specific regeneration[J].J Tissue Eng Regen Med,2020,14(1):82-98.DOI: 10.1002/term.2965.
|
[55] |
RousselleP,BrayeF,DayanG.Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies[J].Adv Drug Deliv Rev,2019,146:344-365.DOI: 10.1016/j.addr.2018.06.019.
|
[56] |
卢姝言,杨松,任李梅,等.人参外泌体促进HaCat细胞增殖和创面愈合[J].中国生物化学与分子生物学报,2021,37(11):1510-1519.DOI: 10.13865/j.cnki.cjbmb.2021.08.1297.
|
[57] |
曾鲁鹏,王华英,施婉华,等.基于芦荟皮层外泌体样囊泡的创面修复作用[J].福建医科大学学报,2022,56(6):489-497.DOI: 10.3969/j.issn.1672-4194.2022.06.005.
|
[58] |
SavcıY,KırbaşOK,BozkurtBT,et al.Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing[J].Food Funct,2021,12(11):5144-5156.DOI: 10.1039/d0fo02953j.
|
[59] |
ZuM, XieD, CanupBSB, et al. 'Green' nanotherapeutics from tea leaves for orally targeted prevention and alleviation of colon diseases[J]. Biomaterials,2021,279:121178.DOI: 10.1016/j.biomaterials.2021.121178.
|
[60] |
MuJ,ZhuangX,WangQ,et al.Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles[J].Mol Nutr Food Res,2014,58(7):1561-1573.DOI: 10.1002/mnfr.201300729.
|
[61] |
ZhangM,ViennoisE,PrasadM,et al.Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer[J].Biomaterials,2016,101:321-340.DOI: 10.1016/j.biomaterials.2016.06.018.
|
[62] |
ŞahinF, KoçakP, GüneşMY, et al. In vitro wound healing activity of wheat-derived nanovesicles[J]. Appl Biochem Biotechnol,2019,188(2):381-394.DOI: 10.1007/s12010-018-2913-1.
|
[63] |
刘议聪,高琪钊,赵玉箫,等.苦瓜外泌体联合莫匹罗星软膏治疗大鼠皮肤深Ⅱ度烫伤的研究[J].徐州医科大学学报,2023,43(8):584-589.DOI: 10.3969/j.issn.2096-3882.2023.08.007.
|
[64] |
RegenteM,PinedoM,San ClementeH,et al.Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth[J].J Exp Bot,2017,68(20):5485-5495.DOI: 10.1093/jxb/erx355.
|
[65] |
DuJ,LiangZ,XuJ,et al.Plant-derived phosphocholine facilitates cellular uptake of anti-pulmonary fibrotic HJT-sRNA-m7[J].Sci China Life Sci,2019,62(3):309-320.DOI: 10.1007/s11427-017-9026-7.
|