留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物来源细胞外囊泡在创面修复中作用的研究进展

王玮琪 羊月婷 苏志宏 李瑾 胡文慧 张培华

王玮琪, 羊月婷, 苏志宏, 等. 植物来源细胞外囊泡在创面修复中作用的研究进展[J]. 中华烧伤与创面修复杂志, 2024, 40(12): 1199-1204. DOI: 10.3760/cma.j.cn501225-20240226-00072.
引用本文: 王玮琪, 羊月婷, 苏志宏, 等. 植物来源细胞外囊泡在创面修复中作用的研究进展[J]. 中华烧伤与创面修复杂志, 2024, 40(12): 1199-1204. DOI: 10.3760/cma.j.cn501225-20240226-00072.
Wang WQ,Yang YT,Su ZH,et al.Research advances on the role of plant-derived extracellular vesicles in wound repair[J].Chin J Burns Wounds,2024,40(12):1199-1204.DOI: 10.3760/cma.j.cn501225-20240226-00072.
Citation: Wang WQ,Yang YT,Su ZH,et al.Research advances on the role of plant-derived extracellular vesicles in wound repair[J].Chin J Burns Wounds,2024,40(12):1199-1204.DOI: 10.3760/cma.j.cn501225-20240226-00072.

植物来源细胞外囊泡在创面修复中作用的研究进展

doi: 10.3760/cma.j.cn501225-20240226-00072
基金项目: 

国家干细胞临床研究项目 MR-44-21-015762

广东省省级科技计划项目 2016A020214018

详细信息
    通讯作者:

    张培华,Email:zhangph1128@126.com

Research advances on the role of plant-derived extracellular vesicles in wound repair

Funds: 

National Stem Cell Clinical Research Project MR-44-21-015762

Guangdong Provincial Science and Technology Plan Project 2016A020214018

More Information
  • 摘要: 植物来源细胞外囊泡(EV)为植物细胞分泌的纳米级囊泡,含有各种蛋白质、脂质及RNA分子,能调节细胞之间的信息交流、物质传递,是细胞通信的重要载体。当前,动物来源EV在种间通信、细胞交流和药物载体研究中得到广泛应用;而植物来源EV由于具有优越的生物相容性和靶向性及低免疫原性已受到人们的普遍重视,与此同时植物来源EV研究和分析技术已取得较大进展。该综述围绕植物来源EV分离技术、表征鉴定及其在创面修复中的作用等方面进行阐述,旨在为今后植物来源EV研究提供新思路和新途径,并为其临床应用提供借鉴。

     

  • 参考文献(65)

    [1] KalluriR,LeBleuVS.The biology, function, and biomedical applications of exosomes[J].Science,2020,367(6478):eaau6977.DOI: 10.1126/science.aau6977.
    [2] NelemansLC,GurevichL.Drug delivery with polymeric nanocarriers-cellular uptake mechanisms[J].Materials (Basel),2020,13(2):366.DOI: 10.3390/ma13020366.
    [3] ZhouM,HuangH,WangD,et al.Light-triggered PEGylation/dePEGylation of the nanocarriers for enhanced tumor penetration[J].Nano Lett,2019,19(6):3671-3675.DOI: 10.1021/acs.nanolett.9b00737.
    [4] KimMK, ChoiYC, ChoSH, et al. The antioxidant effect of small extracellular vesicles derived from aloe vera peels for wound healing[J]. Tissue Eng Regen Med,2021,18(4):561-571.DOI: 10.1007/s13770-021-00367-8.
    [5] SundaramK, MillerDP,KumarA, et al. Plant-derived exosomal nanoparticles inhibit pathogenicity of porphyromonas gingivalis[J]. iScience,2020,23(2):100869. DOI: 10.1016/j.isci.2020.100869.
    [6] SongH, CanupBSB, NgoVL, et al. Internalization of garlic-derived nanovesicles on liver cells is triggered by interaction with CD98[J]. ACS Omega,2020,5(36):23118-23128.DOI: 10.1021/acsomega.0c02893.
    [7] GudbergssonJM,JønssonK,SimonsenJB,et al.Systematic review of targeted extracellular vesicles for drug delivery - considerations on methodological and biological heterogeneity[J].J Control Release,2019,306:108-120.DOI: 10.1016/j.jconrel.2019.06.006.
    [8] KalarikkalSP,SundaramGM.Edible plant-derived exosomal microRNAs: exploiting a cross-kingdom regulatory mechanism for targeting SARS-CoV-2[J].Toxicol Appl Pharmacol,2021,414:115425.DOI: 10.1016/j.taap.2021.115425.
    [9] HalperinW,JensenWA.Ultrastructural changes during growth and embryogenesis in carrot cell cultures[J].J Ultrastruct Res,1967,18(3):428-443.DOI: 10.1016/s0022-5320(67)80128-x.
    [10] AnQ,van BelAJ,HückelhovenR.Do plant cells secrete exosomes derived from multivesicular bodies?[J].Plant Signal Behav,2007,2(1):4-7.DOI: 10.4161/psb.2.1.3596.
    [11] van NielG,D'AngeloG,RaposoG.Shedding light on the cell biology of extracellular vesicles[J].Nat Rev Mol Cell Biol,2018,19(4):213-228.DOI: 10.1038/nrm.2017.125.
    [12] CrescitelliR,LässerC,LötvallJ.Isolation and characterization of extracellular vesicle subpopulations from tissues[J].Nat Protoc,2021,16(3):1548-1580.DOI: 10.1038/s41596-020-00466-1.
    [13] DebbiL,GuoS,SafinaD,et al.Boosting extracellular vesicle secretion[J].Biotechnol Adv,2022,59:107983.DOI: 10.1016/j.biotechadv.2022.107983.
    [14] JiangK,DongC,YinZ,et al.The critical role of exosomes in tumor biology[J].J Cell Biochem,2019,120(5):6820-6832.DOI: 10.1002/jcb.27813.
    [15] JadliAS,BallasyN,EdalatP,et al.Inside(sight) of tiny communicator: exosome biogenesis, secretion, and uptake[J].Mol Cell Biochem,2020,467(1/2):77-94.DOI: 10.1007/s11010-020-03703-z.
    [16] MovahedN, CabanillasDG, WanJ, et al. Turnip mosaic virus components are released into the extracellular space by vesicles in infected leaves[J]. Plant Physiol,2019,180(3):1375-1388.DOI: 10.1104/pp.19.00381.
    [17] CuiY,GaoJ,HeY,et al.Plant extracellular vesicles[J].Protoplasma,2020,257(1):3-12.DOI: 10.1007/s00709-019-01435-6.
    [18] 张雪萍,鲁雨晴,张月倩,等.植物细胞外囊泡及其分析技术的进展[J].生物技术通报,2023,39(5):32-43.DOI: 10.13560/j.cnki.biotech.bull.1985.2022-1106.
    [19] CongM,TanS,LiS,et al.Technology insight: plant-derived vesicles-how far from the clinical biotherapeutics and therapeutic drug carriers?[J].Adv Drug Deliv Rev,2022,182:114108.DOI: 10.1016/j.addr.2021.114108.
    [20] 杨梦楠,刘诗琦,张静,等.果蔬中外泌体样纳米颗粒的分离、表征和应用研究进展[J].食品科学,2021,42(9):355-361.DOI: 10.7506/spkx1002-6630-20200418-240.
    [21] 姚楠.植物脂质生物学进展[J].植物生理学报,2018,54(12):1747.DOI: 10.13592/j.cnki.ppj.2018.1008.
    [22] 王炎钦,董海涛.磷脂酸在植物中的第二信使功能[J].中国生物化学与分子生物学报,2006,22(9):697-703.DOI: 10.3969/j.issn.1007-7626.2006.09.003.
    [23] Pérez-BermúdezP,BlesaJ,SorianoJM,et al.Extracellular vesicles in food: experimental evidence of their secretion in grape fruits[J].Eur J Pharm Sci,2017,98:40-50.DOI: 10.1016/j.ejps.2016.09.022.
    [24] BeachA, ZhangHG, RatajczakMZ, et al. Exosomes: an overview of biogenesis, composition and role in ovarian cancer[J]. J Ovarian Res,2014,7:14.DOI: 10.1186/1757-2215-7-14.
    [25] TakakuraH, NakaoT, NaritaT, et al. Citrus limon L.-derived nanovesicles show an inhibitory effect on cell growth in p53-inactivated colorectal cancer cells via the macropinocytosis pathway[J]. Biomedicines,2022,10(6):1352.DOI: 10.3390/biomedicines10061352.
    [26] LiDF,TangQ,YangMF,et al.Plant-derived exosomal nanoparticles: potential therapeutic for inflammatory bowel disease[J].Nanoscale Adv,2023,5(14):3575-3588.DOI: 10.1039/d3na00093a.
    [27] ZhaoZ, YuS, LiM, et al. Isolation of exosome-like nanoparticles and analysis of microRNAs derived from coconut water based on small RNA high-throughput sequencing[J]. J Agric Food Chem,2018,66(11):2749-2757.DOI: 10.1021/acs.jafc.7b05614.
    [28] 潘林思,王文彩,姚孟宇,等.植物源外泌体样纳米颗粒及其应用研究进展[J].中国中药杂志,2023,48(22):5977-5984.DOI: 10.19540/j.cnki.cjcmm.20230721.602.
    [29] ZhangL, HeF, GaoL, et al. Engineering exosome-like nanovesicles derived from Asparagus cochinchinensis can inhibit the proliferation of hepatocellular carcinoma cells with better safety profile[J]. Int J Nanomedicine,2021,16:1575-1586.DOI: 10.2147/IJN.S293067.
    [30] TengY,XuF,ZhangX,et al.Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12[J].Mol Ther,2021,29(8):2424-2440.DOI: 10.1016/j.ymthe.2021.05.005.
    [31] CaoM,YanH,HanX,et al.Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth[J].J Immunother Cancer,2019,7(1):326.DOI: 10.1186/s40425-019-0817-4.
    [32] ZhangL, LiS, CongM, et al. Lemon-derived extracellular vesicle-like nanoparticles block the progression of kidney stones by antagonizing endoplasmic reticulum stress in renal tubular cells[J]. Nano Lett,2023,23(4):1555-1563.DOI: 10.1021/acs.nanolett.2c05099.
    [33] KalarikkalSP,PrasadD,KasiappanR,et al.A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes[J].Sci Rep,2020,10(1):4456.DOI: 10.1038/s41598-020-61358-8.
    [34] LiuJ, LiW, BianY, et al. Garlic-derived exosomes regulate PFKFB3 expression to relieve liver dysfunction in high-fat diet-fed mice via macrophage-hepatocyte crosstalk[J]. Phytomedicine,2023,112:154679.DOI: 10.1016/j.phymed.2023.154679.
    [35] YangY,WangY,WeiS,et al.Extracellular vesicles isolated by size-exclusion chromatography present suitability for RNomics analysis in plasma[J].J Transl Med,2021,19(1):104.DOI: 10.1186/s12967-021-02775-9.
    [36] GuanS,YuH,YanG,et al.Characterization of urinary exosomes purified with size exclusion chromatography and ultracentrifugation[J].J Proteome Res,2020,19(6):2217-2225.DOI: 10.1021/acs.jproteome.9b00693.
    [37] OtahalA,Kuten-PellaO,KramerK,et al.Functional repertoire of EV-associated miRNA profiles after lipoprotein depletion via ultracentrifugation and size exclusion chromatography from autologous blood products[J].Sci Rep,2021,11(1):5823.DOI: 10.1038/s41598-021-84234-5.
    [38] FitzgeraldJ,LeonardP,DarcyE,et al.Immunoaffinity chromatography: concepts and applications[J].Methods Mol Biol,2017,1485:27-51.DOI: 10.1007/978-1-4939-6412-3_3.
    [39] LiP,KaslanM,LeeSH,et al.Progress in exosome isolation techniques[J].Theranostics,2017,7(3):789-804.DOI: 10.7150/thno.18133.
    [40] HeB,CaiQ,QiaoL,et al.RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles[J].Nat Plants,2021,7(3):342-352.DOI: 10.1038/s41477-021-00863-8.
    [41] 刘娜,杜盼盼,杨扬,等.基于微流控技术的外泌体分离方法的研究进展[J].生物技术通报,2019,35(1):207-213.DOI: 10.13560/j.cnki.biotech.bull.1985.2018-0571.
    [42] ChenJ,LiP,ZhangT,et al.Review on strategies and technologies for exosome isolation and purification[J].Front Bioeng Biotechnol,2022,9:811971.DOI: 10.3389/fbioe.2021.811971.
    [43] LiangsupreeT,MultiaE,RiekkolaML.Modern isolation and separation techniques for extracellular vesicles[J].J Chromatogr A,2021,1636:461773.DOI: 10.1016/j.chroma.2020.461773.
    [44] PisitkunT,ShenRF,KnepperMA.Identification and proteomic profiling of exosomes in human urine[J].Proc Natl Acad Sci U S A,2004,101(36):13368-13373.DOI: 10.1073/pnas.0403453101.
    [45] MaasSL,de VrijJ,van der VlistEJ,et al.Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics[J].J Control Release,2015,200:87-96.DOI: 10.1016/j.jconrel.2014.12.041.
    [46] ThéryC,WitwerKW,AikawaE,et al.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J].J Extracell Vesicles,2018,7(1):1535750.DOI: 10.1080/20013078.2018.1535750.
    [47] PospichalovaV,SvobodaJ,DaveZ,et al.Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer[J].J Extracell Vesicles,2015,4:25530.DOI: 10.3402/jev.v4.25530.
    [48] WilkinsonHN,HardmanMJ.Wound healing: cellular mechanisms and pathological outcomes[J].Open Biol,2020,10(9):200223.DOI: 10.1098/rsob.200223.
    [49] PeñaOA,MartinP.Cellular and molecular mechanisms of skin wound healing[J].Nat Rev Mol Cell Biol,2024,25(8):599-616.DOI: 10.1038/s41580-024-00715-1.
    [50] PuglieseE,CoentroJQ,RaghunathM,et al.Wound healing and scar wars[J].Adv Drug Deliv Rev,2018,129:1-3.DOI: 10.1016/j.addr.2018.05.010.
    [51] JiangD,GuoR,MachensHG,et al.Diversity of fibroblasts and their roles in wound healing[J].Cold Spring Harb Perspect Biol,2023,15(3):a041222.DOI: 10.1101/cshperspect.a041222.
    [52] ChildsDR,MurthyAS.Overview of wound healing and management[J].Surg Clin North Am,2017,97(1):189-207.DOI: 10.1016/j.suc.2016.08.013.
    [53] LandénNX,LiD,StåhleM.Transition from inflammation to proliferation: a critical step during wound healing[J].Cell Mol Life Sci,2016,73(20):3861-3885.DOI: 10.1007/s00018-016-2268-0.
    [54] ScullyD,SfyriP,WilkinsonHN,et al.Optimising platelet secretomes to deliver robust tissue-specific regeneration[J].J Tissue Eng Regen Med,2020,14(1):82-98.DOI: 10.1002/term.2965.
    [55] RousselleP,BrayeF,DayanG.Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies[J].Adv Drug Deliv Rev,2019,146:344-365.DOI: 10.1016/j.addr.2018.06.019.
    [56] 卢姝言,杨松,任李梅,等.人参外泌体促进HaCat细胞增殖和创面愈合[J].中国生物化学与分子生物学报,2021,37(11):1510-1519.DOI: 10.13865/j.cnki.cjbmb.2021.08.1297.
    [57] 曾鲁鹏,王华英,施婉华,等.基于芦荟皮层外泌体样囊泡的创面修复作用[J].福建医科大学学报,2022,56(6):489-497.DOI: 10.3969/j.issn.1672-4194.2022.06.005.
    [58] SavcıY,KırbaşOK,BozkurtBT,et al.Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing[J].Food Funct,2021,12(11):5144-5156.DOI: 10.1039/d0fo02953j.
    [59] ZuM, XieD, CanupBSB, et al. 'Green' nanotherapeutics from tea leaves for orally targeted prevention and alleviation of colon diseases[J]. Biomaterials,2021,279:121178.DOI: 10.1016/j.biomaterials.2021.121178.
    [60] MuJ,ZhuangX,WangQ,et al.Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles[J].Mol Nutr Food Res,2014,58(7):1561-1573.DOI: 10.1002/mnfr.201300729.
    [61] ZhangM,ViennoisE,PrasadM,et al.Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer[J].Biomaterials,2016,101:321-340.DOI: 10.1016/j.biomaterials.2016.06.018.
    [62] ŞahinF, KoçakP, GüneşMY, et al. In vitro wound healing activity of wheat-derived nanovesicles[J]. Appl Biochem Biotechnol,2019,188(2):381-394.DOI: 10.1007/s12010-018-2913-1.
    [63] 刘议聪,高琪钊,赵玉箫,等.苦瓜外泌体联合莫匹罗星软膏治疗大鼠皮肤深Ⅱ度烫伤的研究[J].徐州医科大学学报,2023,43(8):584-589.DOI: 10.3969/j.issn.2096-3882.2023.08.007.
    [64] RegenteM,PinedoM,San ClementeH,et al.Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth[J].J Exp Bot,2017,68(20):5485-5495.DOI: 10.1093/jxb/erx355.
    [65] DuJ,LiangZ,XuJ,et al.Plant-derived phosphocholine facilitates cellular uptake of anti-pulmonary fibrotic HJT-sRNA-m7[J].Sci China Life Sci,2019,62(3):309-320.DOI: 10.1007/s11427-017-9026-7.
  • 加载中
计量
  • 文章访问数:  25
  • HTML全文浏览量:  1
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26

目录

    /

    返回文章
    返回