A multicenter study on the impact of the early infusion rate on prognosis and the factors of influencing the infusion rate in patients with severe burns and inhalation injury
-
摘要:
目的 探讨严重烧伤伴吸入性损伤患者早期输液率对预后的影响及输液率的影响因素。 方法 该研究为回顾性病例系列研究。2015年1月—2020年12月,我国7个烧伤救治中心收治220例符合入选标准的严重烧伤伴吸入性损伤患者,其中大连市第四人民医院13例、海军军医大学第一附属医院26例、暨南大学附属广州市红十字会医院73例、解放军第924医院21例、南昌大学第一附属医院30例、武汉大学同仁医院暨武汉市第三医院30例、郑州市第一人民医院27例。患者中男163例、女57例,年龄为18~91岁。根据患者伤后28 d内存活情况,将患者分为存活组和死亡组,统计2组患者基本情况(性别、年龄、体重、体温等)、伤情(烧伤总面积、伤后入院时间等)、基础疾病情况、伤后液体复苏情况(伤后第1个24 h输液率、输注电解质溶液和胶体溶液比值等)、入院时实验室检查结果(血尿素氮、血肌酐、白蛋白、pH值、碱剩余、血乳酸、氧合指数等)、治疗情况(吸入氧体积分数、住院天数、进行肾脏替代治疗情况等)。采用单因素Cox回归分析调整协变量后,进行多因素Cox回归分析评估伤后第1个24 h输液率对患者死亡的影响。绘制伤后第1个24 h输液率预测死亡风险的受试者操作特征曲线,计算最大约登指数。按最大约登指数确定的伤后第1个24 h输液率预测死亡风险的界值[2.03 mL·kg-1·%体表总面积(TBSA)-1],将患者分为2组,比较2组患者死亡风险。分析前述临床资料与伤后第1个24 h输液率的相关性;采用单因素线性回归分析筛选自变量后,进行多因素线性回归分析筛选伤后第1个24 h输液率的独立影响因素。 结果 与存活组比较,死亡组患者年龄、烧伤总面积均明显增大(Z值分别为12.08、23.71,P<0.05),伤后第1个24 h输液率、吸入氧体积分数与入院时血尿素氮、血肌酐、血乳酸(Z值分别为7.99、4.01、11.76、23.24、5.97,P<0.05)及进行肾脏替代治疗比例(P<0.05)均明显升高,入院时白蛋白、pH值、碱剩余均明显降低(t=2.72,Z值分别为8.18、9.70,P<0.05),住院天数明显减少(Z=85.47,P<0.05)。调整协变量后,伤后第1个24 h输液率是患者死亡的独立影响因素(标准化风险比为1.69,95%置信区间为1.21~2.37,P<0.05)。输液率≥2.03 mL·kg-1·%TBSA-1组患者死亡风险明显高于输液率<2.03 mL·kg-1·%TBSA-1组(风险比为3.47,95%置信区间为1.48~8.13,P<0.05)。烧伤总面积、体重、吸入氧体积分数、体温、伤后入院时间、伤后第1个24 h输注电解质溶液和胶体溶液比值、入院时氧合指数<300与伤后第1个24 h输液率均存在明显相关性(r值分别为-0.192、-0.215、0.137、-0.162、-0.252、0.314,Z=4.48,P<0.05)。筛选自变量后,烧伤总面积、体重、伤后入院时间和入院时氧合指数<300均是伤后第1个24 h输液率的独立影响因素(标准化β值分别为-0.22、-0.22、-0.19、0.46,95%置信区间分别为-0.34~0.09、-0.34~0.10、-0.32~0.06、0.22~0.71,P<0.05)。 结论 严重烧伤伴吸入性损伤患者伤后第1个24 h输液率是死亡的独立影响因素,伤后第1个24 h输液率≥2.03 mL·kg-1·%TBSA-1时患者的死亡风险显著增加。烧伤总面积、体重、伤后入院时间和入院时氧合指数<300是严重烧伤伴吸入性损伤患者伤后第1个24 h输液率的独立影响因素。 Abstract:Objective To investigate the impact of the early infusion rate on prognosis and the factors of influencing the infusion rate in patients with severe burns and inhalation injury. Methods This study was a retrospective case series research. From January 2015 to December 2020, 220 patients with severe burns and inhalation injury meeting the inclusion criteria were admitted to 7 burn treatment centers in China, including 13 cases in the Fourth People's Hospital of Dalian, 26 cases in the First Affiliated Hospital of Naval Medical University, 73 cases in Guangzhou Red Cross Hospital of Jinan University, 21 cases in the 924th Hospital of PLA, 30 cases in the First Affiliated Hospital of Jiangxi Medical College of Nanchang University, 30 cases in Tongren Hospital of Wuhan University & Wuhan Third Hospital, and 27 cases in Zhengzhou First People's Hospital. There were 163 males and 57 females, and their ages ranged from 18 to 91 years. The patients were divided into survival group and death group according to the survival within 28 d post injury. The following data of patients in the 2 groups were collected, including basic information (gender, age, body weight, body temperature, etc.), the injury characteristics (total burn area, post-injury admission time, etc.), the underlying diseases, the post-injury fluid resuscitation condition (infusion rate and ratio of infused electrolyte solution to colloid solution in the first 24 h post injury, etc.), the results of laboratory tests on admission (blood urea nitrogen, blood creatinine, albumin, pH value, base excess, blood lactate, oxygenation index, etc.), and treatment condition (inhaled oxygen volume fraction, hospitalization day, renal replacement therapy, etc.). After adjusting covariates using univariate Cox regression analysis, the multivariate Cox regression analysis was performed to evaluate the impact of infusion rate in the first 24 h post injury on patient death. The receiver operator characteristic curve for the infusion rate in the first 24 h post injury to predict the risk of death was plotted, and the maximum Youden index was calculated. Patients were divided into 2 groups according to the cutoff value (2.03 mL·kg-1·% total body surface area (TBSA)-1) for predicting risk of death by the infusion rate in the first 24 h post injury determined by the maximum Youden index, and the risk of death was compared between the 2 groups. The correlation between the previously mentioned clinical data and the infusion rate in the first 24 h post injury was analyzed; after the univariate linear regression analysis was used to screen the independent variables, the multivariate linear regression analysis was performed to screen the independent influential factors on the infusion rate in the first 24 h post injury. Results Compared with those in survival group, patients in death group had significantly higher age and total burn area (with Z values of 12.08 and 23.71, respectively, P<0.05), the infusion rate in the first 24 h post injury, inhaled oxygen volume fraction, and blood urea nitrogen, blood creatinine, blood lactic acid on admission (with Z values of 7.99, 4.01, 11.76, 23.24, and 5.97, respectively, P<0.05), and the proportion of patients treated with renal replacement therapy (P<0.05) were significantly higher, the albumin, pH value, and base excess on admission were significantly lower (t=2.72, with Z values of 8.18 and 9.70, respectively, P<0.05), and the hospitalization day was significantly reduced (Z=85.47, P<0.05). After adjusting covariates, the infusion rate in the first 24 h post injury was the independent influential factor on death (with standardized hazard ratio of 1.69, 95% confidence interval of 1.21-2.37, P<0.05). Patients in infusion rate ≥2.03 mL·kg-1·%TBSA-1 group had a significantly higher risk of death than those in infusion rate <2.03 mL·kg-1·% TBSA-1 group (with hazard ratio of 3.47, 95% confidence interval of 1.48-8.13, P<0.05). There was a significant correlation between total burn area, body weight, inhaled oxygen volume fraction, body temperature, post-injury admission time, the ratio of infused electrolyte solution to colloid solution in the first 24 h post injury, and oxygenation index <300 on admission and the infusion rate in the first 24 h post injury (with r values of -0.192, -0.215, 0.137, -0.162, -0.252, and 0.314, respectively, Z=4.48, P<0.05). After screening the independent variables, total burn area, body weight, post-injury admission time, and oxygenation index <300 on admission were the independent influential factors on the infusion rate in the first 24 h post injury (with standardized β values of -0.22, -0.22, -0.19, and 0.46, respectively, 95% confidence intervals of -0.34 to 0.09, -0.34 to 0.10, -0.32 to 0.06, and 0.22 to 0.71, respectively, P<0.05). Conclusions The infusion rate in the first 24 h post injury in patients with severe burns and inhalation injury is the independent factor of influencing death, and patients with infusion rate ≥2.03 mL·kg-1·%TBSA-1 in the first 24 h post injury have a significantly increased risk of death. The total burn area, body weight, post-injury admission time, and oxygenation index <300 on admission were the independent factors of influencing the infusion rate in the first 24 h post injury in patients with severe burns and inhalation injury. -
Key words:
- Burns /
- Prognosis /
- Root cause analysis /
- Inhalation injuries /
- Fluid resuscitation /
- Infusion rate
-
参考文献
(34) [1] HodgmanEI,SubramanianM,ArnoldoBD,et al.Future therapies in burn resuscitation[J].Crit Care Clin,2016,32(4):611-619.DOI: 10.1016/j.ccc.2016.06.009. [2] MercelA,TsihlisND,MaileR,et al.Emerging therapies for smoke inhalation injury: a review[J].J Transl Med,2020,18(1):141.DOI: 10.1186/s12967-020-02300-4. [3] DyamenahalliK,GargG,ShuppJW,et al.Inhalation injury: unmet clinical needs and future research[J].J Burn Care Res,2019,40(5):570-584.DOI: 10.1093/jbcr/irz055. [4] ShahA,PedrazaI,MitchellC,et al.Fluid volumes infused during burn resuscitation 1980-2015: a quantitative review[J].Burns,2020,46(1):52-57.DOI: 10.1016/j.burns.2019.11.013. [5] DittrichM,HosniND,de CarvalhoWB.Association between fluid creep and infection in burned children: a cohort study[J].Burns,2020,46(5):1036-1042.DOI: 10.1016/j.burns.2020.02.003. [6] SaffleJR.Fluid creep and over-resuscitation[J].Crit Care Clin,2016,32(4):587-598.DOI: 10.1016/j.ccc.2016.06.007. [7] PayneML,YoungS,HeardJ,et al.Effect of dexmedetomidine on fluid resuscitation in burn-injured patients[J].J Burn Care Res,2024,45(5):1257-1263.DOI: 10.1093/jbcr/irae038. [8] BasasVA,SchutzmanLM,BrownIE.Implications of the regulation of endothelial glycocalyx breakdown and reconstitution in severe burn injury[J].J Surg Res,2023,286:110-117.DOI: 10.1016/j.jss.2022.12.033. [9] 中国老年医学学会烧创伤分会.吸入性损伤临床诊疗全国专家共识(2018版)[J].中华烧伤杂志,2018,34(11):770-775.DOI: 10.3760/cma.j.issn.1009-2587.2018.11.010. [10] KimJH.Multicollinearity and misleading statistical results[J].Korean J Anesthesiol,2019,72(6):558-569.DOI: 10.4097/kja.19087. [11] AdamantosS.Fluid therapy in pulmonary disease: how careful do we need to be?[J].Front Vet Sci,2021,8:624833.DOI: 10.3389/fvets.2021.624833. [12] 潘泽平,荆银磊,李明,等.吸入性损伤对大面积烧伤患者休克期液体复苏的影响[J].中华烧伤杂志,2020,36(5):370-377.DOI: 10.3760/cma.j.cn501120-20191204-00452. [13] HughesKR,ArmstrongRF,BroughMD,et al.Fluid requirements of patients with burns and inhalation injuries in an intensive care unit[J].Intensive Care Med,1989,15(7):464-466.DOI: 10.1007/BF00255603. [14] DanielsM,FuchsPC,LeferingR,et al.Is the Parkland formula still the best method for determining the fluid resuscitation volume in adults for the first 24 hours after injury? - A retrospective analysis of burn patients in Germany[J].Burns,2021,47(4):914-921.DOI: 10.1016/j.burns.2020.10.001. [15] FosterKN,CarusoDM.Fluid resuscitation in burn patients: current care and new frontiers[J].Crit Care Clin,2016,32(4):xv-xvi.DOI: 10.1016/j.ccc.2016.07.001. [16] HunterJE,DrewPJ,PotokarTS,et al.Albumin resuscitation in burns: a hybrid regime to mitigate fluid creep[J].Scars Burn Heal,2016,2:2059513116642083.DOI: 10.1177/2059513116642083. [17] LegrandM,ClarkAT,NeyraJA,et al.Acute kidney injury in patients with burns[J].Nat Rev Nephrol,2024,20(3):188-200.DOI: 10.1038/s41581-023-00769-y. [18] LangTC,ZhaoR,KimA,et al.A critical update of the assessment and acute management of patients with severe burns[J].Adv Wound Care (New Rochelle),2019,8(12):607-633.DOI: 10.1089/wound.2019.0963. [19] CartottoR,JohnsonLS,SavetamalA,et al.American Burn Association clinical practice guidelines on burn shock resuscitation[J].J Burn Care Res,2024,45(3):565-589.DOI: 10.1093/jbcr/irad125. [20] WareLB,MatthayMA.Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome[J].Am J Respir Crit Care Med,2001,163(6):1376-1383.DOI: 10.1164/ajrccm.163.6.2004035. [21] HuβmannB,LeferingR,TaegerG,et al.Influence of prehospital fluid resuscitation on patients with multiple injuries in hemorrhagic shock in patients from the DGU trauma registry[J].J Emerg Trauma Shock,2011,4(4):465-471.DOI: 10.4103/0974-2700.86630. [22] VignonP,EvrardB,AsfarP,et al.Fluid administration and monitoring in ARDS: which management?[J].Intensive Care Med,2020,46(12):2252-2264.DOI: 10.1007/s00134-020-06310-0. [23] PalmerL.Fluid management in patients with trauma: restrictive versus liberal approach[J].Vet Clin North Am Small Anim Pract,2017,47(2):397-410.DOI: 10.1016/j.cvsm.2016.10.014. [24] GilCano A,Gracia RomeroM,MongeGarcía MI,et al.Preemptive hemodynamic intervention restricting the administration of fluids attenuates lung edema progression in oleic acid-induced lung injury[J].Med Intensiva,2017,41(3):135-142.DOI: 10.1016/j.medin.2016.08.008. [25] GiretzlehnerM,DirnbergerJ,OwenR,et al.The determination of total burn surface area: how much difference?[J].Burns,2013,39(6):1107-1113.DOI: 10.1016/j.burns.2013.01.021. [26] BittnerE,SheridanR.Acute respiratory distress syndrome, mechanical ventilation, and inhalation injury in burn patients[J].Surg Clin North Am,2023,103(3):439-451.DOI: 10.1016/j.suc.2023.01.006. [27] GiovanniSP,SeitzKP,HoughCL.Fluid management in acute respiratory failure[J].Crit Care Clin,2024,40(2):291-307.DOI: 10.1016/j.ccc.2024.01.004. [28] LeeJ,CorlK,LevyMM.Fluid therapy and acute respiratory distress syndrome[J].Crit Care Clin,2021,37(4):867-875.DOI: 10.1016/j.ccc.2021.05.012. [29] LiX,ZhangQ,ZhuY,et al.Effect of perioperative goal-directed fluid therapy on postoperative complications after thoracic surgery with one-lung ventilation: a systematic review and meta-analysis[J].World J Surg Oncol,2023,21(1):297.DOI: 10.1186/s12957-023-03169-5. [30] KanCFK,SkaggsJD.Current commonly used dynamic parameters and monitoring systems for perioperative goal-directed fluid therapy: a review[J].Yale J Biol Med,2023,96(1):107-123.DOI: 10.59249/JOAP6662. [31] TejiramS,TranchinaSP,TravisTE,et al.The first 24 hours: burn shock resuscitation and early complications[J].Surg Clin North Am,2023,103(3):403-413.DOI: 10.1016/j.suc.2023.02.002. [32] 中国老年医学学会烧创伤分会.烧伤休克防治全国专家共识(2020版)[J].中华烧伤杂志,2020,36(9):786-792.DOI: 10.3760/cma.j.cn501120-20200623-00323. [33] ISBI Practice Guidelines Committee,SubcommitteeSteering,SubcommitteeAdvisory.ISBI practice guidelines for burn care[J].Burns,2016,42(5):953-1021.DOI: 10.1016/j.burns.2016.05.013. [34] EljaiekR,HeylbroeckC,DuboisMJ.Albumin administration for fluid resuscitation in burn patients: a systematic review and meta-analysis[J].Burns,2017,43(1):17-24.DOI: 10.1016/j.burns.2016.08.001. -
Table 1. 2组严重烧伤伴吸入性损伤患者基本情况与伤情及基础疾病情况比较
组别 例数 性别(例) 年龄[岁,M(Q1,Q3)] 体重[kg,M(Q1,Q3)] 伤后入院时间[h,M(Q1,Q3)] 烧伤总面积[%TBSA,M(Q1,Q3)] 男 女 存活组 191 139 52 45.00(34.00,54.00) 65.00(60.00,75.00) 4.00(2.00,7.00) 63.00(50.00,82.50) 死亡组 29 24 5 56.00(46.00,62.00) 70.00(60.00,72.00) 4.00(2.00,6.00) 90.00(77.00,98.00) 统计量值 χ²=1.31 Z=12.08 Z=0.45 Z=0.62 Z=23.71 P值 0.253 <0.001 0.504 0.432 <0.001 注:TBSA为体表总面积;“—”表示无此项;1 mmHg=0.133 kPa Table 2. 2组严重烧伤伴吸入性损伤患者伤后液体复苏情况比较[M(Q1,Q3)]
组别 例数 院前输液量(mL) 伤后第1个24 h 伤后第2个24 h 输液率(mL·kg-1·%TBSA-1) 输入新鲜冰冻血浆量(mL) 输注电解质溶液和胶体溶液比值 尿量(mL·kg-1·h-1) 输液率(mL·kg-1·%TBSA-1) 输注电解质溶液和胶体溶液比值 尿量(mL·kg-1·h-1) 存活组 191 500.00(0,1 750.00) 1.97(1.63,2.43) 1 990(1 150, 3 000) 2.42(1.45,3.73) 1.18(0.80,1.70) 1.55(1.26,2.00) 2.33(1.47,3.66) 1.64(1.26,2.19) 死亡组 29 250.00(0,1 387.50) 2.49(2.04,3.30) 2 500(1 300, 3 000) 2.78(2.24,4.60) 0.99(0.81,1.39) 1.41(1.27,1.96) 2.28(1.10,3.65) 1.46(1.10,1.84) Z值 0.45 7.99 1.38 1.63 1.77 0.14 0.17 3.07 P值 0.505 0.005 0.241 0.211 0.185 0.707 0.679 0.081 注:TBSA为体表总面积 Table 3. 2组严重烧伤伴吸入性损伤患者治疗情况与入院时实验室检查结果比较
组别 例数 入院时接受机械通气(例) 吸入氧体积分数[%,M(Q1,Q3)] 住院天数[d,M(Q1,Q3)] 行肾脏替代治疗(例) 伤后第1次手术时间[d,M(Q1,Q3)] 血尿素氮[mmol/L,M(Q1,Q3)] 存活组 191 34 37.00(31.17,41.00) 48.00(30.00,75.00) 7 4.00(2.75,6.00) 6.30(4.95,7.40) 死亡组 29 4 41.00(33.00,45.76) 10.00(5.00,16.00) 7 4.00(3.75,5.25) 7.00(6.50,8.30) 统计量值 — Z=4.01 Z=85.47 — Z<0.01 Z=11.76 P值 0.595 0.047 <0.001 <0.001 0.977 <0.001 注:1 mmHg=0.133 kPa;“—”表示无此项;PaO2为动脉血氧分压,SaO2为动脉血氧饱和度,PaCO2为动脉血二氧化碳分压 Table 4. 220例严重烧伤伴吸入性损伤患者伤后第1个24 h输液率对死亡的影响的多因素Cox回归分析结果
多因素Cox回归模型 非标准化风险比(95%置信区间) 标准化风险比(95%置信区间) P值 模型1 1.59(1.15~2.20) 1.51(1.13~2.01) 0.005 模型2 1.81(1.24~2.65) 1.69(1.21~2.37) 0.002 模型3 1.80(1.25~2.59) 1.68(1.22~2.32) 0.002 模型4 1.76(1.21~2.55) 1.65(1.19~2.29) 0.003 注:模型1为调整协变量前,模型2为调整单因素Cox回归分析筛选的协变量年龄、烧伤总面积、血肌酐、白蛋白、pH值、碱剩余、血乳酸后,模型3为调整逐步向后回归分析筛选的协变量年龄、烧伤总面积、血肌酐、碱剩余后,模型4为调整最小绝对值收缩和选择算法回归分析筛选的协变量年龄、烧伤总面积、血肌酐、pH值、碱剩余后 Table 5. 220例严重烧伤伴吸入性损伤患者临床资料(连续性变量)和伤后第1个24 h输液率的相关性
变量 r值 P值 年龄(岁) -0.064 0.348 烧伤总面积(%TBSA) -0.192 0.004 体重(kg) -0.215 0.001 平均动脉压(mmHg) 0.022 0.742 吸入氧体积分数(%) 0.137 0.042 脉搏(次/min) 0.054 0.428 体温(℃) -0.162 0.016 血尿素氮(mmol/L) 0.080 0.239 血肌酐(mmol/L) -0.034 0.615 白蛋白(g/L) 0.057 0.402 血钾(mmol/L) -0.030 0.660 血钠(mmol/L) 0.126 0.062 血氯(mmol/L) -0.003 0.960 pH值 -0.074 0.277 PaO2(mmHg) -0.056 0.406 SaO2 -0.090 0.181 PaCO2(mmHg) 0.084 0.216 碱剩余(mmol/L) -0.014 0.832 血乳酸(mmol/L) -0.131 0.053 血红蛋白(g/L) 0.021 0.751 伤后入院时间(h) -0.252 <0.001 伤后第1个24 h输注电解质溶液和胶体溶液比值 0.314 <0.001 注:TBSA为体表总面积,PaO2为动脉血氧分压,SaO2为动脉血氧饱和度,PaCO2为动脉血二氧化碳分压;1 mmHg=0.133 kPa;血尿素氮等实验室检查结果均是入院时的情况 Table 6. 220例严重烧伤伴吸入性损伤患者临床资料(分类变量)和伤后第1个24 h输液率的相关性
变量 例数 输液率[ mL·kg-1·%TBSA-1,M(Q1,Q3)] Z值 P值 性别 女 57 2.08(1.73,2.49) 0.65 0.419 男 163 1.98(1.64,2.50) 致伤原因 火焰烧伤 214 2.02(1.67,2.49) 0.08 0.782 热液烫伤 6 2.08(1.34,2.85) 入院时氧合指数<300 否 109 1.92(1.59,2.41) 4.48 0.036 是 111 2.12(1.73,2.75) 入院时机械通气 否 182 1.99(1.63,2.49) 0.61 0.367 是 38 2.10(1.74,2.72) 基础疾病 否 191 2.07(1.70,2.52) 1.99 0.160 是 29 1.78(1.50,2.36) 注:TBSA为体表总面积 Table 7. 220例严重烧伤伴吸入性损伤患者伤后第1个24 h输液率影响因素的多因素线性回归分析阳性结果
变量 模型1 模型2 模型3 VIF值 标准化β值 95%置信区间 P值 标准化β值 95%置信区间 P值 标准化β值 95%置信区间 P值 烧伤总面积(%TBSA) -0.22 -0.34~0.09 <0.001 -0.22 -0.34~0.09 <0.001 -0.22 -0.34~0.09 <0.001 1.10 体重(kg) -0.22 -0.34~0.10 <0.001 -0.22 -0.34~0.10 <0.001 -0.23 -0.35~0.11 <0.001 1.02 伤后入院时间(h) -0.19 -0.32~0.06 0.004 -0.19 -0.32~0.06 0.004 -0.21 -0.34~0.08 0.001 1.18 入院时氧合指数<300(例) 0.46 0.22~0.71 <0.001 0.46 0.22~0.71 <0.001 0.47 0.22~0.71 <0.001 1.30 注:TBSA为体表总面积,VIF为方差膨胀因子;模型1、2、3分别纳入单因素线性回归分析、逐步向后回归分析、最小绝对值收缩和选择算法回归分析筛选的影响伤后第1个24 h输液率的影响因素