留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人吸入性损伤与循环炎症蛋白之间因果关系的双样本孟德尔随机化分析

代站站 朱沁 佟希睿 马兵 夏照帆 房贺

代站站, 朱沁, 佟希睿, 等. 人吸入性损伤与循环炎症蛋白之间因果关系的双样本孟德尔随机化分析[J]. 中华烧伤与创面修复杂志, 2024, 40(11): 1043-1051. DOI: 10.3760/cma.j.cn501225-20240429-00155.
引用本文: 代站站, 朱沁, 佟希睿, 等. 人吸入性损伤与循环炎症蛋白之间因果关系的双样本孟德尔随机化分析[J]. 中华烧伤与创面修复杂志, 2024, 40(11): 1043-1051. DOI: 10.3760/cma.j.cn501225-20240429-00155.
Dai ZZ,Zhu Q,Tong XR,et al.Two-sample Mendelian randomization analysis of the causal relationship between human inhalation injury and circulating inflammatory proteins[J].Chin J Burns Wounds,2024,40(11):1043-1051.DOI: 10.3760/cma.j.cn501225-20240429-00155.
Citation: Dai ZZ,Zhu Q,Tong XR,et al.Two-sample Mendelian randomization analysis of the causal relationship between human inhalation injury and circulating inflammatory proteins[J].Chin J Burns Wounds,2024,40(11):1043-1051.DOI: 10.3760/cma.j.cn501225-20240429-00155.

人吸入性损伤与循环炎症蛋白之间因果关系的双样本孟德尔随机化分析

doi: 10.3760/cma.j.cn501225-20240429-00155
基金项目: 

上海市科技创新行动计划 22Y11900200

国家自然科学基金青年科学基金项目 81701899

上海市医苑新星青年医学人才 SHWSRS 2023-62

海军军医大学深蓝人才工程项目 2021-28

详细信息
    通讯作者:

    房贺,Email:fanghe_2005@163.com

Two-sample Mendelian randomization analysis of the causal relationship between human inhalation injury and circulating inflammatory proteins

Funds: 

Shanghai Science and Technology Innovation Action Plan 22Y11900200

Youth Science Fund Program of National Natural Science Foundation of China 81701899

Shanghai "Rising Stars of Medical Talents" Youth Development Program SHWSRS 2023-62

The Deep Blue Project of Naval Medical University 2021-28

More Information
  • 摘要:   目的  探究人吸入性损伤与循环炎症蛋白之间的因果关系。  方法  该研究为基于双样本孟德尔随机化(MR)分析的研究。以吸入性损伤为暴露因素、循环炎症蛋白为结局,从全基因组关联分析数据库中获得吸入性损伤(216 993个样本)和91种循环炎症蛋白(14 824个样本)的数据,采用双样本MR分析方法进行分析。根据连锁不平衡分析获得与吸入性损伤显著相关的独立位点单核苷酸多态性(SNP)并将其作为工具变量,主要采用逆方差加权(IVW)法进行吸入性损伤与91种循环炎症蛋白之间因果关系的分析,进一步使用加权中位数法、加权模式法、MR-Egger法和简单模式法进行验证。根据前述IVW法分析结果,针对符合假设的吸入性损伤SNP,进行Cochran Q检验评估异质性,进行MR-Egger回归检验、MR-PRESSO离群值检验评估水平多效性,进行留一法分析评估可靠性。  结果  筛选出6个达到显著阈值(P<5×10-5)的SNP作为代表吸入性损伤的工具变量,其F值均>10,提示均为强相关工具变量。基于6个吸入性损伤SNP,IVW法分析显示,吸入性损伤与白细胞介素20(IL-20)、IL-20受体亚基α(IL-20RA)、IL-5、肿瘤坏死因子受体超家族成员9(TNFRSF9)之间均存在显著因果关系(比值比分别为1.01、1.01、1.02、1.01,95%置信区间分别为1.00~1.02、1.00~1.03、1.01~1.03、1.00~1.03,P<0.05)。经加权中位数法和MR-Egger法验证,吸入性损伤与IL-5(比值比分别为1.02、1.03,95%置信区间分别为1.00~1.04、1.01~1.04,P<0.05)、TNFRSF9(比值比分别为1.02、1.03,95%置信区间分别为1.00~1.04、1.01~1.04,P<0.05)之间均存在显著因果关系;经加权模式法和简单模式法验证,吸入性损伤与IL-20、IL-20RA、IL-5和TNFRSF9之间的因果关系不明显(P值均>0.05),仍需以IVW法结果为准。根据前述IVW法分析结果,Cochran Q检验评估显示,与IL-20、IL-20RA、IL-5和TNFRSF9存在显著因果关系的6个吸入性损伤SNP均不存在显著异质性(Q值分别为2.67、5.00、5.17、5.29,P>0.05);MR-Egger回归检验、MR-PRESSO离群值检验评估显示,与IL-20、IL-20RA、IL-5和TNFRSF9存在显著因果关系的6个吸入性损伤SNP均不存在显著水平多效性(截距分别为0.01、<0.01、-0.02、-0.03,RSSobs值分别为3.33、9.00、7.88、7.26,P>0.05);留一法分析显示,吸入性损伤与IL-20、IL-20RA、IL-5和TNFRSF9之间的显著因果关系在逐个剔除6个吸入性损伤SNP后结果稳定可靠。  结论  通过双样本MR分析,明确吸入性损伤与4种循环炎症蛋白IL-20、IL-20RA、IL-5和TNFRSF9存在显著因果关系,提示发生吸入性损伤后以上4种循环炎症蛋白的生成呈增多趋势。

     

  • 参考文献(42)

    [1] DeutschCJ,TanA,SmailesS,et al.The diagnosis and management of inhalation injury: an evidence based approach[J].Burns,2018,44(5):1040-1051.DOI: 10.1016/j.burns.2017.11.013.
    [2] JeschkeMG,van BaarME,ChoudhryMA,et al.Burn injury[J].Nat Rev Dis Primers,2020,6(1):11.DOI: 10.1038/s41572-020-0145-5.
    [3] 张宇翔,兰美娟,梁诗雨,等.物理性气道廓清技术在吸入性损伤治疗中的应用进展[J].中华烧伤与创面修复杂志,2023,39(5):475-480.DOI: 10.3760/cma.j.cn501225-20220608-00226.
    [4] LanX,HuangZ,TanZ,et al.Nebulized heparin for inhalation injury in burn patients: a systematic review and meta-analysis[J/OL].Burns Trauma,2020,8:tkaa015[2024-04-29].https://pubmed.ncbi.nlm.nih.gov/32523966/.DOI: 10.1093/burnst/tkaa015.
    [5] ChongSJ,KokYO,TayRXY,et al.Quantifying the impact of inhalational burns: a prospective study[J/OL].Burns Trauma,2018,6:26[2024-04-29].https://pubmed.ncbi.nlm.nih.gov/30238012/.DOI: 10.1186/s41038-018-0126-z.
    [6] HengX,CaiP,YuanZ,et al.Efficacy and safety of extracorporeal membrane oxygenation for burn patients: a comprehensive systematic review and meta-analysis[J/OL].Burns Trauma,2023,11:tkac056[2024-04-29].https://pubmed.ncbi.nlm.nih.gov/36873286/.DOI: 10.1093/burnst/tkac056.
    [7] FengT,ZhouL,GaiS,et al.Acacia catechu (L.f.) Willd and Scutellaria baicalensis Georgi extracts suppress LPS-induced pro-inflammatory responses through NF-κB, MAPK, and PI3K-Akt signaling pathways in alveolar epithelial type II cells[J].Phytother Res,2019,33(12):3251-3260.DOI: 10.1002/ptr.6499.
    [8] DriesDJ,EndorfFW.Inhalation injury: epidemiology, pathology, treatment strategies[J].Scand J Trauma Resusc Emerg Med,2013,21:31.DOI: 10.1186/1757-7241-21-31.
    [9] ParkGY,ParkJW,JeongDH,et al.Prolonged airway and systemic inflammatory reactions after smoke inhalation[J].Chest,2003,123(2):475-480.DOI: 10.1378/chest.123.2.475.
    [10] CaoH,ShiC,AihemaitiZ,et al.Association between circulating inflammatory proteins and benign prostatic disease: a Mendelian randomization study[J].Sci Rep,2024,14(1):23667.DOI: 10.1038/s41598-024-74737-2.
    [11] XiaoY,FangH,ZhuY,et al.Multifunctional cationic hyperbranched polyaminoglycosides that target multiple mediators for severe abdominal trauma management[J].Adv Sci (Weinh),2024,11(1):e2305273.DOI: 10.1002/advs.202305273.
    [12] NiewczasMA,PavkovME,SkupienJ,et al.A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes[J].Nat Med,2019,25(5):805-813.DOI: 10.1038/s41591-019-0415-5.
    [13] WoolfB,RajasundaramS,CronjéHT,et al.A drug target for erectile dysfunction to help improve fertility, sexual activity, and wellbeing: mendelian randomisation study[J].BMJ,2023,383:e076197.DOI: 10.1136/bmj-2023-076197.
    [14] ClaytonGL,GonçalvesA,Soares,GouldingN,et al.A framework for assessing selection and misclassification bias in mendelian randomisation studies: an illustrative example between body mass index and covid-19[J].BMJ,2023,381:e072148.DOI: 10.1136/bmj-2022-072148.
    [15] TschidererL,van der SchouwYT,BurgessS,et al. Hypertensive disorders of pregnancy and cardiovascular disease risk: a Mendelian Randomisation study[J].Eur Heart J,2023,44(Suppl 2):S655.2726.DOI: 10.1093/eurheartj/ehad655.2726.
    [16] WeiY,ZhanY,CarlssonS.Childhood adiposity and novel subtypes of diabetes in adults: a Mendelian randomisation and genome-wide genetic correlation study[J].Lancet Glob Health,2023,11Suppl 1:S1.DOI: 10.1016/S2214-109X(23)00086-4.
    [17] ZhaoJH,StaceyD,ErikssonN,et al.Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets[J].Nat Immunol,2023,24(9):1540-1551.DOI: 10.1038/s41590-023-01588-w.
    [18] SannaS,van ZuydamNR,MahajanA,et al.Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases[J].Nat Genet,2019,51(4):600-605.DOI: 10.1038/s41588-019-0350-x.
    [19] LiuX,TongX,ZouY,et al.Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome[J].Nat Genet,2022,54(1):52-61.DOI: 10.1038/s41588-021-00968-y.
    [20] BurgessS,DanielRM,ButterworthAS,et al.Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways[J].Int J Epidemiol,2015,44(2):484-495.DOI: 10.1093/ije/dyu176.
    [21] BowdenJ,HemaniG,Davey SmithG.Invited commentary: detecting individual and global horizontal pleiotropy in Mendelian randomization-a job for the humble heterogeneity statistic?[J].Am J Epidemiol,2018,187(12):2681-2685.DOI: 10.1093/aje/kwy185.
    [22] ZhengJ,BairdD,BorgesMC,et al.Recent developments in mendelian randomization studies[J].Curr Epidemiol Rep,2017,4(4):330-345.DOI: 10.1007/s40471-017-0128-6.
    [23] BurgessS,BowdenJ,FallT,et al.Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants[J].Epidemiology,2017,28(1):30-42.DOI: 10.1097/EDE.0000000000000559.
    [24] DyamenahalliK,GargG,ShuppJW,et al.Inhalation injury: unmet clinical needs and future research[J].J Burn Care Res,2019,40(5):570-584.DOI: 10.1093/jbcr/irz055.
    [25] OuyangW,O'GarraA.IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation[J].Immunity,2019,50(4):871-891.DOI: 10.1016/j.immuni.2019.03.020.
    [26] SpinicelliS,NocentiniG,RonchettiS,et al.GITR interacts with the pro-apoptotic protein Siva and induces apoptosis[J].Cell Death Differ,2002,9(12):1382-1384.DOI: 10.1038/sj.cdd.4401140.
    [27] WuJ,WangG,HaoJ,et al.The correlation between IL-20 and the Th2 immune response in human asthma[J].Asian Pac J Allergy Immunol,2014,32(4):316-320.
    [28] BaradaO,Salomé-DesnoulezS,MadouriF,et al.IL-20 cytokines are involved in the repair of airway epithelial barrier: implication in exposure to cigarette smoke and in COPD pathology[J].Cells,2023,12(20):2464.DOI: 10.3390/cells12202464.
    [29] KolumamG,WuX,LeeWP,et al.IL-22R ligands IL-20, IL-22, and IL-24 promote wound healing in diabetic db/db mice[J].PLoS One,2017,12(1):e0170639.DOI: 10.1371/journal.pone.0170639.
    [30] PestkaS,KrauseCD,SarkarD,et al.Interleukin-10 and related cytokines and receptors[J].Annu Rev Immunol,2004,22:929-979.DOI: 10.1146/annurev.immunol.22.012703.104622.
    [31] BlumbergH,ConklinD,XuWF,et al.Interleukin 20: discovery, receptor identification, and role in epidermal function[J].Cell,2001,104(1):9-19.DOI: 10.1016/s0092-8674(01)00187-8.
    [32] NiroomandA,GhaidanH,HallgrenO,et al.Corticotropin releasing hormone as an identifier of bronchiolitis obliterans syndrome[J].Sci Rep,2022,12(1):8413.DOI: 10.1038/s41598-022-12546-1.
    [33] TakatsuK,NakajimaH.IL-5 and eosinophilia[J].Curr Opin Immunol,2008,20(3):288-294.DOI: 10.1016/j.coi.2008.04.001.
    [34] HammadH,LambrechtBN.The basic immunology of asthma[J].Cell,2021,184(9):2521-2522.DOI: 10.1016/j.cell.2021.04.019.
    [35] GandhiNA,BennettBL,GrahamNM,et al.Targeting key proximal drivers of type 2 inflammation in disease[J].Nat Rev Drug Discov,2016,15(1):35-50.DOI: 10.1038/nrd4624.
    [36] BurbankAJ,SchworerSA,SoodA,et al.Airway IL-1β associates with IL-5 production following dust mite allergen inhalation in humans[J].Respir Res,2021,22(1):309.DOI: 10.1186/s12931-021-01903-9.
    [37] 刘云峰,张勇,丁盛,等.重度吸入性损伤患者气道呼出气冷凝液中多种细胞因子水平变化及临床意义[J].中华危重病急救医学,2023,35(8):818-822.DOI: 10.3760/cma.j.cn121430-20221219-01105.
    [38] GieseckRL3rd,WilsonMS,WynnTA.Type 2 immunity in tissue repair and fibrosis[J].Nat Rev Immunol,2018,18(1):62-76.DOI: 10.1038/nri.2017.90.
    [39] FinnertyCC,HerndonDN,PrzkoraR,et al.Cytokine expression profile over time in severely burned pediatric patients[J].Shock,2006,26(1):13-19.DOI: 10.1097/01.shk.0000223120.26394.7d.
    [40] SchmidtMJ,NaghdlooA,PrabakarRK,et al.Polyploid cancer cells reveal signatures of chemotherapy resistance[J].bioRxiv[Preprint],2024:2024.08.19.608632.DOI: 10.1101/2024.08.19.608632.
    [41] GuoX,ZhangY,ZhengL,et al.Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing[J].Nat Med,2018,24(7):978-985.DOI: 10.1038/s41591-018-0045-3.
    [42] LiL,LiY,LinJ,et al.A pyroptosis-related gene signature predicts prognosis and tumor immune microenvironment in colorectal cancer[J].Technol Cancer Res Treat,2024,23:15330338241277584.DOI: 10.1177/15330338241277584.
  • 图  1  人吸入性损伤与循环炎症蛋白的双样本孟德尔随机化分析核心假设与分析流程图

    注:SNP为单核苷酸多态性;实线箭头和“√”代表存在关联性,虚线箭头和“×”代表不存在关联性;①表示工具变量与暴露因素强相关,②表示工具变量不受暴露因素之外的混杂因素干扰,③表示工具变量不会通过暴露因素以外的途径影响结局

    图  2  人吸入性损伤与91种循环炎症蛋白因果关系的双样本MR分析结果

    注:基于6个吸入性损伤单核苷酸多态性分析;最内圈蓝色点代表逆方差加权法的比值比,黑色虚线代表0刻度线,虚线以内表示比值比小于0,虚线以外代表比值比大于0;从外到内的彩色圆环依次代表循环炎症蛋白的逆方差加权法的P值、孟德尔随机化(MR)-Egger法的P值、加权模式法的P值、简单模式法的P值、加权中位数法的P值;同一个圆环的不同扇环块代表一种循环炎症蛋白,与吸入性损伤有明确因果关系的4种循环炎症蛋白由箭头指示,红色箭头指示肿瘤坏死因子受体超家族成员9,黑色箭头指示白细胞介素5(IL-5),绿色箭头指示IL-20受体亚基α,紫色箭头指示IL-20

    图  3  留一法分析的与4种循环炎症蛋白存在显著因果关系的6个人吸入性损伤SNP的可靠性。3A.SNP与白细胞介素20(IL-20)的因果关系;3B.SNP与IL-20受体亚基α的因果关系;3C.SNP与IL-5的因果关系;3D.SNP与肿瘤坏死因子受体超家族成员9的因果关系

    注:SNP为单核苷酸多态性;每个SNP对应的线段为误差线,线段中的圆点代表β值,均在0点右侧,提示结果可靠

    Table  1.   连锁不平衡分析筛选出的作为吸入性损伤工具变量的6个SNP的详细信息

    SNP名称效应等位基因其他等位基因ββ值的标准误等位基因频率P值(×10-6F
    rs118055061CT2.470.550.028.61019.80
    rs139738340TC6.671.48<0.010.63820.37
    rs11950253AG0.580.130.485.13020.79
    rs324341AG4.120.920.010.69120.22
    rs5760255GA0.910.170.190.10028.37
    rs8813AG0.700.160.240.64220.37
    注:P<5×10-5为筛选单核苷酸多态性(SNP)的显著阈值,F值≥10代表强相关工具变量
    下载: 导出CSV

    Table  2.   人吸入性损伤与4种循环炎症蛋白因果关系的双样本MR分析结果

    循环炎症蛋白与分析方法比值比95%置信区间P
    IL-20
    IVW法1.011.00~1.020.035
    MR-Egger法1.010.99~1.020.379
    加权中位数法1.011.00~1.030.144
    简单模式法1.010.99~1.030.258
    加权模式法1.010.99~1.030.231
    IL-20RA
    IVW法1.011.00~1.030.023
    MR-Egger法1.010.99~1.030.247
    加权中位数法1.011.00~1.030.084
    简单模式法1.021.00~1.050.152
    加权模式法1.000.98~1.020.869
    IL-5
    IVW法1.021.01~1.030.003
    MR-Egger法1.031.01~1.040.035
    加权中位数法1.021.00~1.040.024
    简单模式法1.021.00~1.050.136
    加权模式法1.021.01~1.030.145
    TNFRSF9
    IVW法1.011.00~1.030.036
    MR-Egger法1.031.01~1.040.035
    加权中位数法1.021.00~1.040.011
    简单模式法1.021.00~1.040.188
    加权模式法1.021.00~1.040.083
    注:基于6个吸入性损伤单核苷酸多态性分析;MR为孟德尔随机化,IL为白细胞介素,IVW为逆方差加权,IL-20RA为IL-20受体亚基α,TNFRSF9为肿瘤坏死因子受体超家族成员9
    下载: 导出CSV

    Table  3.   与4种循环炎症蛋白存在显著因果关系的6个人吸入性损伤SNP的异质性与水平多效性分析结果

    循环炎症蛋白Cochran Q检验MR-Egger回归检验MR-PRESSO离群值检验
    QP截距PRSSobsP
    IL-202.670.7560.010.5073.330.805
    IL-20RA5.000.416<0.010.8959.000.400
    IL-55.170.396-0.020.2377.880.456
    TNFRSF95.290.382-0.030.0857.260.464
    注:SNP为单核苷酸多态性,IL为白细胞介素,IL-20RA为IL-20受体亚基α,TNFRSF9为肿瘤坏死因子受体超家族成员9,MR为孟德尔随机化
    下载: 导出CSV
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-29

目录

    /

    返回文章
    返回