Analysis of biofilm genes and quorum sensing genes of carbapenem resistant Acinetobacter baumannii in the wounds of diabetic foot patients
-
摘要:
目的 探讨糖尿病足患者创面中耐碳青霉烯类鲍曼不动杆菌(CRAB)携带生物膜基因和群体感应基因情况,以及CRAB对抗生素的耐药情况。 方法 该研究为回顾性观察性研究。2020年10月—2023年9月,天津医科大学朱宪彝纪念医院糖尿病足科收治177例符合入选标准的糖尿病足患者,其中男128例、女49例,年龄(56±10)岁。从前述患者的糖尿病足创面中培养出233株鲍曼不动杆菌,先用基质辅助激光解析电离飞行时间质谱鉴定细菌,然后采用动态比浊法通过全自动微生物系统做药物敏感试验分析耐药率。任意选择10株CRAB[来自10例患者,其中男9例、女1例,年龄(63±13)岁]和10株碳青霉烯类敏感鲍曼不动杆菌[CSAB,来自10例患者,其中男8例、女2例,年龄(63±9)岁],提取DNA并进行全基因组测序,使用综合抗生素耐药基因数据库对耐药基因进行注释,绘制系统发育树分析CRAB与CSAB的同源关系。将鲍曼不动杆菌的7个管家基因输入PubMLST网站,分析CRAB与CSAB的多位点序列分型。将测得的全部基因放入PubMLST网站查找每株鲍曼不动杆菌是否携带生物膜基因bap、csuA、csuB、csuA/B、csuC、csuD、csuE、pgaA、pgaB、pgaC、pgaD、bfmR、bfmS、ompA和群体感应基因abaI、abaR及鞭毛基因pilA,并比较CRAB与CSAB携带这些基因的差异。分析携带苯唑西林酶(OXA)耐药基因blaOXA的CRAB与CSAB所携带生物膜基因和群体感应基因情况。大体观察感染CRAB与CSAB的糖尿病足创面中是否存在胶冻样膜样结构,若存在则采用扫描电子显微镜观察其微观结构。 结果 检测到的鲍曼不动杆菌中,CSAB、CRAB、多重耐药鲍曼不动杆菌、泛耐药鲍曼不动杆菌的阳性检出率分别为16.7%(39/233)、83.3%(194/233)、95.3%(222/233)、34.3%(80/233),未检测到全耐药鲍曼不动杆菌。233株鲍曼不动杆菌对碳青霉烯类抗生素的耐药率均>80%;对头孢哌酮/舒巴坦的耐药率较低,为37%,对其他头孢类抗生素(头孢噻肟、头孢他啶、头孢替坦和头孢呋辛)的耐药率均>80%;对青霉素类抗生素的耐药率均>80%;对喹诺酮类抗生素的耐药率均>60%;对米诺环素的耐药率仅为12%;对替加环素和黏菌素的耐药率均<1%。系统发育树显示,10株CRAB高度同源,而10株CSAB的同源度不高。多位点序列分型分析显示,10株CRAB均为一种分型;10株CSAB中除1株无分型外,其余9株有7种分型。10株CRAB中有8株均含有完整的生物膜基因和群体感应基因;10株CSAB的生物膜基因均不完整,且均不携带bap基因。CRAB与CSAB均不携带鞭毛基因pilA。与CRAB相比,CSAB携带的生物膜基因bap、csuA、csuC、csuD及群体感应基因abaI和abaR均显著下降(P<0.05)。CRAB携带的主要blaOXA大类为blaOXA-23-like(具体为blaOXA-167)和blaOXA-51-like(具体为blaOXA-66),均有碳青霉烯酶活性。10株CRAB中有8株同时携带blaOXA-66和blaOXA-167且均有较为完整的群体感应基因和生物膜基因。CSAB携带的主要blaOXA大类为blaOXA-51-like和blaOXA-213-like,虽然有碳青霉烯酶活性,但临床药物敏感试验显示其均对碳青霉烯类抗生素敏感。感染CRAB的创面中可见胶冻样膜样结构,为细菌生物膜;感染CSAB的创面中未找到胶冻样膜样结构。 结论 糖尿病足创面中的CRAB与CSAB在多位点序列分型、携带的生物膜基因和群体感应基因及blaOXA基因方面存在较大差异,导致两者对抗生素的耐药情况也存在差异。 Abstract:Objective To investigate the biofilm genes and quorum sensing genes of carbapenem resistant Acinetobacter baumannii (CRAB) in the wounds of diabetic foot patients. Methods This study was a retrospective observational study. The 233 strains of Acinetobacter baumannii were cultured from 177 inpatients (128 males and 49 females, aged (56±10) years) with diabetic foot admitted to the Department of Diabetic Foot of Tianjin Medical University Chu Hsien-I Memorial Hospital from October 2020 to September 2023. Two hundred and thirty-three Acinetobacter baumannii strains were detected by bacterial culture from the diabetic foot wounds of the aforementioned patients. All Acinetobacter baumannii strains were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, followed by analysis of their resistance rate using kinetic turbidimetric assay by a fully automated microbiological analysis system. Ten CRAB strains (from 10 patients, 9 males and 1 female, aged (63±13) years) and 10 carbapenem sensitive Acinetobacter baumannii (CSAB; from 10 patients, 8 males and 2 females, aged (63±9) years) strains were randomly selected, and the whole DNA genome was extracted and sequenced. The antibiotic resistance genes were annotated using a comprehensive antibiotic resistance gene database, and a phylogenetic tree was drawn to analyze the homologous relationship between CRAB and CSAB. The 7 housekeeping genes of Acinetobacter baumannii was entered into the PubMLST website to analyze the multi-locus sequence typing of CRAB and CSAB. All the measured genes were put into the PubMLST website to search for the biofilm genes bap, csuA, csuB, csuA/B, csuC, csuD, csuE, pgaA, pgaB, pgaC, pgaD, bfmR, bfmS, ompA carried by each Acinetobacter baumannii, as well as the quorum sensing genes abaI and abaR, and flagellar gene pilA. The differences in carrying these genes between CRAB and CSAB were compared. The biofilm genes and quorum sensing genes carried by CRAB and CSAB carrying oxacillinase (OXA) resistance gene blaOXA were analyzed. Gross observation was performed to check if there was gel-like membrane-like substance in the diabetic foot wounds infected with CRAB and CSAB, and if so, the microstructure was observed by scanning electron microscope. Results Among the detected Acinetobacter baumannii, the positive detection rates of CSAB, CRAB, multi-drug resistant Acinetobacter baumannii, and pan-drug resistant Acinetobacter baumannii were 16.7% (39/233), 83.3% (194/233), 95.3% (222/233), and 34.3% (80/233), respectively, and no fully drug-resistant Acinetobacter baumannii was detected. Among 233 strains of Acinetobacter baumannii, the resistance rate to carbapenem antibiotics exceeded 80%; the resistance rate of cefoperazone/sulbactam was relatively low, at 37%; the resistance rates to the other cephalosporin antibiotics (cefotaxime, ceftazimide, cefotetan, and cefuroxime) were more than 80%; the resistance rates to all penicillin antibiotics were greater than 80%; the resistance rates to quinolone antibiotics were all over 60%; the resistance rate to minocycline was only 12%; the resistance rates to tigecycline and colistin did not exceed 1%. The phylogenetic tree showed that 10 CRAB strains were highly homologous, while 10 CSAB strains had low homology. The analysis of multi-locus sequence typing showed that 10 CRAB strains were all the same type; among the 10 CSAB strains, except 1 strain without typing, the remaining 9 CSAB strains had 7 types. Eight of 10 CRAB strains contained complete biofilm genes and quorum sensing genes. The biofilm genes from the strains of CSAB were incomplete and none carried the bap gene. Neither CRAB nor CSAB carried the flagellar gene pilA. Compared with that carried by CRAB, biofilm genes bap, csuA, csuC, and csuD and quorum sensing genes abaI and abaR carried by CSAB were significantly decreased (P<0.05). The main blaOXA categories carried by CRAB were blaOXA-23-like (specifically BlaOXA-167) and blaOXA-51-like (specifically blaOXA-66), both of which had carbapenase activity. Eight of 10 CRAB strains carried both blaOXA-66 and blaOXA-167, and all of them had relatively complete quorum sensing genes and biofilm genes. The main blaOXA categories carried by CSAB were blaOXA-51-like and blaOXA-213-like. Although they had carbapenemase activity, clinical drug sensitivity test showed that they were all sensitive to carbapenem antibiotics. Gel-like and membrane-like substance could be seen in wounds infected with CRAB, which were biofilm; no gel-like and membrane-like substance was found in the wound infected with CSAB. Conclusions CRAB and CSAB in diabetic foot wounds are significantly different in terms of multi-locus sequence typing, carrying biofilm genes, quorum sensing genes, and blaOXA gene, leading to differences in antibiotic resistance between the two. -
Key words:
- Diabetic foot /
- Biofilms /
- Quorum sensing /
- Acinetobacter baumannii /
- Carbapenem /
- Drug resistance
-
参考文献
(55) [1] 吴静,郭立新.中国糖尿病地图[M].北京:人民卫生出版社,2022. [2] ChenL, SunS, GaoY, et al. Global mortality of diabetic foot ulcer: a systematic review and meta-analysis of observational studies[J]. Diabetes Obes Metab, 2023,25(1):36-45. DOI: 10.1111/dom.14840. [3] 王宁, 鞠上. 糖尿病足溃疡难愈合机制研究进展[J].中华烧伤与创面修复杂志,2022,38(11):1085-1089. DOI: 10.3760/cma.j.cn501225-20220227-00038. [4] 陈耀楠,王丹钰,袁倩,等. 糖尿病足溃疡慢性伤口的形成机制及新型敷料的研究进展[J]. 中华糖尿病杂志,2023,15(2):199-203. DOI: 10.3760/cma.j.cn115791-20220419-00173. [5] 郭庆娇, 欧阳静, 饶佳琴, 等. 糖尿病患者糖尿病足溃疡复发风险预测模型的构建及初步验证[J].中华烧伤与创面修复杂志,2023,39(12):1149-1157. DOI: 10.3760/cma.j.cn501225-20231101-00166. [6] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J].中华糖尿病杂志,2021,13(4):315-409. DOI: 10.3760/cma.j.cn115791-20210221-00095. [7] BusSA, LaveryLA, Monteiro-SoaresM, et al. Guidelines on the prevention of foot ulcers in persons with diabetes (IWGDF 2019 update)[J]. Diabetes Metab Res Rev, 2020,36Suppl 1:e3269. DOI: 10.1002/dmrr.3269. [8] WangA, LvG, ChengX, et al. Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition)[J/OL]. Burns Trauma, 2020,8:tkaa017[2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/32685563/. DOI: 10.1093/burnst/tkaa017. [9] NelsonRE, HyunD, JezekA, et al. Mortality, length of stay, and healthcare costs associated with multidrug-resistant bacterial infections among elderly hospitalized patients in the United States[J]. Clin Infect Dis, 2022,74(6):1070-1080. DOI: 10.1093/cid/ciab696. [10] DuF, MaJ, GongH, et al. Microbial infection and antibiotic susceptibility of diabetic foot ulcer in China: literature review[J]. Front Endocrinol (Lausanne), 2022,13:881659. DOI: 10.3389/fendo.2022.881659. [11] 中国两网监测云-全国细菌耐药监测网 2024-07-15 https://carss.cn/sys/Htmls/dist/index.html 中国两网监测云-全国细菌耐药监测网[EB/OL].[2024-07-15]. https://carss.cn/sys/Htmls/dist/index.html.
[12] XuJ, ChenW, HeL, et al. Most postoperative reserved "normal" metatarsal stumps of diabetic foot osteomyelitis are infected but have healing potential[J]. Front Endocrinol (Lausanne), 2023,14:1165305. DOI: 10.3389/fendo.2023.1165305. [13] SennevilleE, GachetB, BlondiauxN, et al. Do anti-biofilm antibiotics have a place in the treatment of diabetic foot osteomyelitis?[J]. Antibiotics (Basel), 2023,12(2):317.DOI: 10.3390/antibiotics12020317. [14] MeaHJ, YongP, WongEH. An overview of Acinetobacter baumannii pathogenesis: motility, adherence and biofilm formation[J]. Microbiol Res, 2021,247:126722. DOI: 10.1016/j.micres.2021.126722. [15] YamabeK, ArakawaY, ShojiM, et al. Enhancement of Acinetobacter baumannii biofilm growth by cephem antibiotics via enrichment of protein and extracellular DNA in the biofilm matrices[J]. J Appl Microbiol, 2022,133(3):2002-2013. DOI: 10.1111/jam.15712. [16] TammaPD, AitkenSL, BonomoRA, et al. Infectious diseases society of america guidance on the treatment of ampC β-lactamase-producing enterobacterales, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections[J]. Clin Infect Dis, 2022,74(12):2089-2114. DOI: 10.1093/cid/ciab1013. [17] ChandranS, ManokaranY, VijayakumarS, et al. Enhanced bacterial killing with a combination of sulbactam/minocycline against dual carbapenemase-producing Acinetobacter baumannii[J]. Eur J Clin Microbiol Infect Dis,2023,42(5):645-651. DOI: 10.1007/s10096-023-04583-z. [18] HillyerT, BeninBM, SunC,et al. A novel strategy to characterize the pattern of β-lactam antibiotic-induced drug resistance in Acinetobacter baumannii[J]. Sci Rep,2023,13(1):9177. DOI: 10.1038/s41598-023-36475-9. [19] WatkinsRR, BonomoRA. Sulbactam-durlobactam: a step forward in treating carbapenem-resistant Acinetobacter baumannii (CRAB) infections[J]. Clin Infect Dis, 2023,76(Suppl 2):S163-S165. DOI: 10.1093/cid/ciad093. [20] LeeCR, LeeJH, ParkM, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options[J]. Front Cell Infect Microbiol, 2017,7:55. DOI: 10.3389/fcimb.2017.00055. [21] KarageorgopoulosDE, FalagasME. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections[J]. Lancet Infect Dis, 2008,8(12):751-762. DOI: 10.1016/S1473-3099(08)70279-2. [22] MonemS, Furmanek-BlaszkB, ŁupkowskaA, et al. Mechanisms protecting Acinetobacter baumannii against multiple stresses triggered by the host immune response, antibiotics and outside-host environment[J]. Int J Mol Sci,2020,21(15):5498. DOI: 10.3390/ijms21155498. [23] IovlevaA, McElhenyCL, FowlerEL, et al. In vitro activity of sulbactam-durlobactam against colistin-resistant and/or cefiderocol-non-susceptible, carbapenem-resistant Acinetobacter baumannii collected in U.S. hospitals[J]. Antimicrob Agents Chemother, 2024,68(3):e0125823. DOI: 10.1128/aac.01258-23. [24] GiannellaM, VialeP. Treating carbapenem-resistant Acinetobacter baumannii infections[J]. Lancet Infect Dis, 2023,23(9):994-995. DOI: 10.1016/S1473-3099(23)00203-7. [25] MillerWR, AriasCA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics[J]. Nat Rev Microbiol, 2024,22(10):598-616. DOI: 10.1038/s41579-024-01054-w. [26] IovlevaA, MustaphaMM, GriffithMP, et al. Carbapenem-resistant Acinetobacter baumannii in U.S. hospitals: diversification of circulating lineages and antimicrobial resistance[J]. mBio, 2022,13(2):e0275921. DOI: 10.1128/mbio.02759-21. [27] BulachD, CarterGP, LiL, et al. The whole-genome molecular epidemiology of sequential isolates of Acinetobacter baumannii colonizing the rectum of patients in an adult intensive care unit of a tertiary hospital[J]. Microbiol Spectr, 2023,11(6):e0219123. DOI: 10.1128/spectrum.02191-23. [28] HamidianM, NigroSJ. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii[J]. Microb Genom, 2019,5(10):e000306. DOI: 10.1099/mgen.0.000306. [29] GuD, WuY, ChenK, et al. Recovery and genetic characterization of clinically-relevant ST2 carbapenem-resistant Acinetobacter baumannii isolates from untreated hospital sewage in Zhejiang province, China[J]. Sci Total Environ, 2024,916:170058. DOI: 10.1016/j.scitotenv.2024.170058. [30] PakharukovaN, MalmiH, TuittilaM, et al. Archaic chaperone-usher pili self-secrete into superelastic zigzag springs[J]. Nature, 2022,609(7926):335-340. DOI: 10.1038/s41586-022-05095-0. [31] RomeroM, MayerC, HeebS, et al. Mushroom-shaped structures formed in Acinetobacter baumannii biofilms grown in a roller bioreactor are associated with quorum sensing-dependent Csu-pilus assembly[J]. Environ Microbiol, 2022,24(9):4329-4339. DOI: 10.1111/1462-2920.15985. [32] AhmadI, NadeemA, MushtaqF, et al. Csu pili dependent biofilm formation and virulence of Acinetobacter baumannii[J]. NPJ Biofilms Microbiomes, 2023,9(1):101. DOI: 10.1038/s41522-023-00465-6. [33] de BreijA, GaddyJ, van der MeerJ, et al. CsuA/BABCDE-dependent pili are not involved in the adherence of Acinetobacter baumannii ATCC19606(T) to human airway epithelial cells and their inflammatory response[J]. Res Microbiol, 2009,160(3):213-218. DOI: 10.1016/j.resmic.2009.01.002. [34] ChoiAH, SlamtiL, AvciFY, et al. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-beta-1-6-N-acetylglucosamine, which is critical for biofilm formation[J]. J Bacteriol, 2009,191(19):5953-5963. DOI: 10.1128/JB.00647-09. [35] WuHJ, XiaoZG, LvXJ, et al. Drug-resistant Acinetobacter baumannii: from molecular mechanisms to potential therapeutics (Review)[J]. Exp Ther Med, 2023,25(5):209. DOI: 10.3892/etm.2023.11908. [36] YangCH, SuPW, MoiSH,et al. Biofilm formation in Acinetobacter baumannii: genotype-phenotype correlation[J]. Molecules, 2019,24(10):1849. DOI: 10.3390/molecules24101849. [37] HardingCM, HennonSW, FeldmanMF. Uncovering the mechanisms of Acinetobacter baumannii virulence[J]. Nat Rev Microbiol, 2018,16(2):91-102. DOI: 10.1038/nrmicro.2017.148. [38] MendesSG, ComboSI, AllainT, et al. Co-regulation of biofilm formation and antimicrobial resistance in Acinetobacter baumannii: from mechanisms to therapeutic strategies[J]. Eur J Clin Microbiol Infect Dis, 2023,42(12):1405-1423. DOI: 10.1007/s10096-023-04677-8. [39] KimSY, KimMH, KimSI, et al. The sensor kinase BfmS controls production of outer membrane vesicles in Acinetobacter baumannii[J]. BMC Microbiol, 2019,19(1):301. DOI: 10.1186/s12866-019-1679-0. [40] TiwariV, PatelV, TiwariM. In-silico screening and experimental validation reveal L-Adrenaline as anti-biofilm molecule against biofilm-associated protein (Bap) producing Acinetobacter baumannii[J]. Int J Biol Macromol, 2018,107(Pt A):1242-1252. DOI: 10.1016/j.ijbiomac.2017.09.105. [41] UpmanyuK, KumarR, Rizwanul HaqueQM, et al. Exploring the evolutionary and pathogenic role of Acinetobacter baumannii biofilm-associated protein (Bap) through in silico structural modeling[J]. Arch Microbiol,2024,206(6):267.DOI: 10.1007/s00203-024-03992-8. [42] MohamadTS, RahmanJK, AhmedAA, et al. Down-regulation of abaI, abaR, Bap and OmpA genes in Acinetobacter baumannii by ethanol extract of Glycyrrhiza glabra after toxicity assessment[J]. Cell Mol Biol (Noisy-le-grand),2023,69(12):194-200. DOI: 10.14715/cmb/2023.69.12.31. [43] LiouML, SooPC, LingSR, et al. The sensor kinase BfmS mediates virulence in Acinetobacter baumannii[J]. J Microbiol Immunol Infect, 2014,47(4):275-281. DOI: 10.1016/j.jmii.2012.12.004. [44] KimHJ, KimNY, KoSY, et al. Complementary regulation of BfmRS two-component and AbaIR quorum sensing systems to express virulence-associated genes in Acinetobacter baumannii[J]. Int J Mol Sci, 2022,23(21):13136. DOI: 10.3390/ijms232113136. [45] LiY, WangB, LuF, et al. Synergistic inhibitory effect of polymyxin B in combination with ceftazidime against robust biofilm formed by Acinetobacter baumannii with genetic deficiency in AbaI/AbaR quorum sensing[J]. Microbiol Spectr, 2022,10(1):e0176821. DOI: 10.1128/spectrum.01768-21. [46] PaluchE, Rewak-SoroczyńskaJ, JędrusikI, et al. Prevention of biofilm formation by quorum quenching[J]. Appl Microbiol Biotechnol, 2020,104(5):1871-1881. DOI: 10.1007/s00253-020-10349-w. [47] LawSKK, TanHS. The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies[J]. Microbiol Res, 2022,260:127032. DOI: 10.1016/j.micres.2022.127032. [48] LiH, LiuF, ZhangY, et al. Evolution of carbapenem-resistant Acinetobacter baumannii revealed through whole-genome sequencing and comparative genomic analysis[J]. Antimicrob Agents Chemother, 2015,59(2):1168-1176. DOI: 10.1128/AAC.04609-14. [49] HackelMA, TsujiM, YamanoY, et al. In vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant Gram-negative bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 study)[J]. Antimicrob Agents Chemother, 2017,61(9):e00093-17. DOI: 10.1128/AAC.00093-17. [50] LeeYL, KoWC, HsuehPR. Geographic patterns of Acinetobacter baumannii and carbapenem resistance in the Asia-Pacific Region: results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2012-2019[J]. Int J Infect Dis, 2023,127:48-55. DOI: 10.1016/j.ijid.2022.12.010. [51] NigroSJ, HallRM. Does the intrinsic oxaAb (blaOXA-51-like) gene of Acinetobacter baumannii confer resistance to carbapenems when activated by ISAba1?[J]. J Antimicrob Chemother, 2018,73(12):3518-3520. DOI: 10.1093/jac/dky334. [52] AnggrainiD, KemalRA, HadiU, et al. The susceptibility pattern and distribution of blaOXA-23 genes of clinical isolate Acinetobacter baumannii in a tertiary hospital, Indonesia[J]. J Infect Dev Ctries,2022,16(5):821-826. DOI: 10.3855/jidc.15902. [53] AbouelhassanY, NicolauDP, AbdelraoufK. Defining optimal sulbactam regimens for treatment of Acinetobacter baumannii pneumonia and impact of blaOXA-23 on efficacy[J]. J Antimicrob Chemother, 2024,79(9):2306-2316. DOI: 10.1093/jac/dkae229. [54] NeupaneL, SahAK, RayamajheeB, et al. Detection of blaoxa-23 gene from carbapenem-resistant Acinetobacter baumannii[J]. J Nepal Health Res Counc,2023,20(4):899-905. DOI: 10.33314/jnhrc.v20i4.4257. [55] LiuS, HuangG, GongY, et al. Rapid and accurate detection of carbapenem-resistance gene by isothermal amplification in Acinetobacter baumannii[J/OL]. Burns Trauma,2020,8:tkaa026[2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/32905076/. DOI: 10.1093/burnst/tkaa026. -
图 1 从177例糖尿病足患者创面中检出的233株鲍曼不动杆菌对不同抗生素的耐药率分析
注:从上至下的抗生素种类依次为黏菌素、替加环素、米诺环素、多西环素、四环素、妥布霉素、磺胺甲𫫇唑、左氧氟沙星、环丙沙星、氨曲南、头孢吡肟、头孢哌酮/舒巴坦、头孢噻肟、头孢他啶、头孢替坦、头孢呋辛、哌拉西林/他唑巴坦、哌拉西林、阿莫西林/克拉维酸、美罗培南、亚胺培南
Figure 1. Analysis of the resistance rate of 233 strains of Acinetobacter baumannii detected in the wounds of 177 diabetic foot patients to different antibiotics
图 2 糖尿病足患者创面中检出的10株CRAB与10株CSAB的系统发育树描记图
注:10株耐碳青霉烯类鲍曼不动杆菌(CRAB)来自10例患者,10株碳青霉烯类敏感鲍曼不动杆菌(CSAB)来自另10例患者;图中最右侧1列数字的1~7、202~204为CRAB菌株号,82、12、121、44、42、86、9、109、18、14为CSAB菌株号;紫色数字为自展值的百分数,代表系统发育树的可信度,>59%即视为可信
Figure 2. The graphy of phylogenetic tree of 10 CRAB strains and 10 CSAB strains detected in the wounds of diabetic foot patients
图 3 糖尿病足患者创面中检出的10株CRAB与10株CSAB携带的生物膜基因与群体感应基因及鞭毛基因情况
注:10株耐碳青霉烯类鲍曼不动杆菌(CRAB)来自10例患者,10株碳青霉烯类敏感鲍曼不动杆菌(CSAB)来自另10例患者;黑色实心三角表示携带该基因,空心三角表示不携带该基因
Figure 3. Biofilm genes, quorum sensing genes and flagellum gene carried by 10 strains of CRAB and 10 strains of CSAB detected in the wounds of diabetic foot patients
表 1 糖尿病足创面中鲍曼不动杆菌对不同抗生素的最低抑菌浓度折点(mg/L)
Table 1. Break point of minimum inhibitory concentration of Acinetobacter baumannii to different antibiotics in diabetic foot wounds
敏感性 黏菌素 替加环素 米诺环素 多西环素 四环素 妥布霉素 磺胺甲𫫇唑 左氧氟沙星 环丙沙星 氨曲南 头孢吡肟 敏感 ≤2 ≤2 ≤4 ≤4 ≤4 ≤4 ≤40 ≤2 ≤1 ≤8 ≤8 中介 — 4 8 8 8 8 — 4 2 16 16 耐药 ≥4 ≥8 ≥16 ≥16 ≥16 ≥16 ≥80 ≥8 ≥4 ≥32 ≥32 注:“—”表示无此项 表 2 糖尿病足患者创面中检出的10株CRAB与10株CSAB携带的生物膜基因与群体感应基因及鞭毛基因情况比较
Table 2. Comparison of biofilm genes, quorum sensing genes and flagellum gene carried by 10 CRAB strains and 10 CSAB strains detected in the wounds of diabetic foot patients
类别 bap ompA csuA csuB csuA/B csuC csuD csuE pgaA pgaB pgaC pgaD bfmR bfmS abaI abaR pilA CRAB 9 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 0 CSAB 0 8 4 7 7 6 6 6 8 8 8 8 10 9 6 3 0 P值 <0.001 0.237 0.005 0.105 0.105 0.043 0.043 0.152 0.237 0.237 0.237 0.105 >0.999 0.500 0.043 0.002 >0.999 注:10株耐碳青霉烯类鲍曼不动杆菌(CRAB)来自10例患者,10株碳青霉烯类敏感鲍曼不动杆菌(CSAB)来自另10例患者;bap~bfmS为生物膜基因、abaI和abaR为群体感应基因、pilA为鞭毛基因 -
徐俊视频.mp4
-