留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脂肪间充质干细胞外泌体对脓毒症小鼠急性肺损伤的影响及其机制

白晓智 陶克 刘洋 郝彤 张浩 官浩

白晓智, 陶克, 刘洋, 等. 脂肪间充质干细胞外泌体对脓毒症小鼠急性肺损伤的影响及其机制[J]. 中华烧伤与创面修复杂志, 2024, 40(12): 1-10. DOI: 10.3760/cma.j.cn501225-20240927-00355.
引用本文: 白晓智, 陶克, 刘洋, 等. 脂肪间充质干细胞外泌体对脓毒症小鼠急性肺损伤的影响及其机制[J]. 中华烧伤与创面修复杂志, 2024, 40(12): 1-10. DOI: 10.3760/cma.j.cn501225-20240927-00355.
Bai Xiaozhi,Tao Ke,Liu Yang,et al.Effects and underlying mechanism of exosomes of adipose-derived mesenchymal stem cells on acute lung injury of septic mice[J].Chin J Burns Wounds,2024,40(12):1-10.DOI: 10.3760/cma.j.cn501225-20240927-00355.
Citation: Bai Xiaozhi,Tao Ke,Liu Yang,et al.Effects and underlying mechanism of exosomes of adipose-derived mesenchymal stem cells on acute lung injury of septic mice[J].Chin J Burns Wounds,2024,40(12):1-10.DOI: 10.3760/cma.j.cn501225-20240927-00355.

脂肪间充质干细胞外泌体对脓毒症小鼠急性肺损伤的影响及其机制

doi: 10.3760/cma.j.cn501225-20240927-00355
基金项目: 

国家自然科学基金面上基金项目 82272269

详细信息
    通讯作者:

    陶克,Email:tao-ke2001@163.com

    官浩,Email:guanhao@hotmail.com

Effects and underlying mechanism of exosomes of adipose-derived mesenchymal stem cells on acute lung injury of septic mice

Funds: 

General Program of National Natural Science Foundation of China 82272269

  • 摘要:   目的  探讨人脂肪间充质干细胞(ADSC)外泌体对脓毒症小鼠急性肺损伤的影响及其机制。  方法  本研究为实验研究。选取第4~5代ADSC,采用差速超高速离心法分离并提取其上清液中的外泌体,对外泌体鉴定后使用。取24只成年雄性BALB/c小鼠,按照随机数字表法(分组方法下同)分成正常对照组、单纯盲肠结扎穿孔(CLP)组和CLP+ADSC外泌体组并进行相应处理,每组8只。伤后24 h,采用苏木精-伊红染色观测小鼠肺组织形态,采用原位末端转移酶标记法检测肺组织细胞凋亡情况,采用酶联免疫吸附测定法检测小鼠血清中肿瘤坏死因子α(TNF-α)和白细胞介素1β(IL-1β)水平,使用相关试剂盒检测肺组织中丙二醛和超氧化物歧化酶(SOD)的含量,采用免疫荧光法检测小鼠肺组织细胞中CD86、CD206的表达。取小鼠巨噬细胞RAW246.7,分为空白对照组、单纯LPS组和LPS+ADSC外泌体组并进行相应处理。培养12 h 后,采用相关试剂盒检测细胞中ATP含量、线粒体活性氧的阳性细胞百分比、线粒体膜电位情况,采用实时荧光定量反转录PCR法检测细胞中M1极化标志因子诱导型一氧化氮合酶(iNOS)、M2极化标志因子精氨酸酶-1(Arg1)以及炎症因子TNF-α和IL-1β的mRNA表达量。以上实验除mRNA表达量的检测样本数为3以外,其余各指标的检测样本均为4。  结果  伤后24 h,正常对照组小鼠肺组织结构清晰完整,无炎症细胞浸润;单纯CLP组较正常对照组小鼠的肺组织水肿明显,炎症细胞浸润现象明显,凋亡、坏死细胞明显增多;CLP+ADSC外泌体组较单纯CLP组小鼠肺组织水肿症状明显减轻,炎症细胞浸润明显减少,细胞凋亡、坏死情况明显改善。伤后24 h,与正常对照组比较,单纯CLP组小鼠血清中TNF-α和IL-1β含量均明显增加(t值分别为50.82、30.81,P<0.05);与单纯CLP组比较,CLP+ADSC外泌体组小鼠血清中的TNF-α和IL-1β含量均明显降低(t值分别为16.36、19.25,P<0.05)。伤后24 h,与正常对照组比较,单纯CLP组小鼠肺组织中丙二醛含量明显升高(t=9.89,P<0.05),SOD含量明显降低(t=5.01,P<0.05);与单纯CLP组比较,CLP+外泌体组小鼠肺组织中丙二醛含量明显降低(t=4.38,P<0.05),SOD含量明显升高(t=2.97,P<0.05)。伤后24 h,与正常对照组相比,单纯CLP组小鼠的肺组织中CD86阳性细胞明显增多,CD206阳性细胞明显减少;与单纯CLP组相比,CLP+ADSC外泌体组小鼠肺组织中CD86阳性细胞明显减少,CD206阳性细胞明显增多。培养12 h后,与空白对照组比较,单纯LPS组RAW246.7细胞中ATP含量明显降低(t=6.28,P<0.05);与单纯LPS组比较,LPS+ADSC外泌体组RAW246.7细胞中ATP含量明显升高(t=4.01,P<0.05)。培养12 h后,与空白对照组的22%±4%比较,单纯LPS组RAW246.7细胞中线粒体活性氧的阳性细胞百分比40%±6%明显增加(t=5.04,P<0.05);与单纯LPS组比较,LPS+ADSC外泌体组RAW246.7细胞中线粒体活性氧的阳性细胞百分比30%±5%明显降低(t=2.65,P<0.05)。培养12 h后,与空白对照组相比,单纯LPS组RAW246.7细胞TNF-α、IL-1β和iNOS的mRNA表达均显著增加(t值分别为16.51、31.04、7.70,P<0.05),Arg1的mRNA表达量降低但差异无统计学意义(P>0.05);与单纯LPS组比较,LPS+ADSC外泌体组RAW246.7细胞中TNF-α、IL-1β和iNOS的mRNA表达量均明显降低(t值分别为11.38、22.58、5.28,P<0.05),Arg1的mRNA表达量明显升高(t=7.66,P<0.05)。  结论  人ADSC来源外泌体可能通过改善LPS诱导的RAW246.7细胞线粒体功能障碍,抑制巨噬细胞向M1极化,降低炎症反应,从而发挥改善脓毒症小鼠肺损伤作用。

     

  • 参考文献(39)

    [1] LongME, MallampalliRK, HorowitzJC. Pathogenesis of pneumonia and acute lung injury[J]. Clin Sci (Lond), 2022,136(10):747-769. DOI: 10.1042/CS20210879.
    [2] LocatiM, CurtaleG, DiversityMantovani A., mechanisms, and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020,15:123-147. DOI: 10.1146/annurev-pathmechdis-012418-012718.
    [3] OishiY, ManabeI. Macrophages in inflammation, repair and regeneration[J]. Int Immunol, 2018,30(11):511-528. DOI: 10.1093/intimm/dxy054.
    [4] SchumackerPT, GillespieMN, NakahiraK, et al. Mitochondria in lung biology and pathology: more than just a powerhouse[J]. Am J Physiol Lung Cell Mol Physiol, 2014,306(11):L962-974. DOI: 10.1152/ajplung.00073.2014.
    [5] KellnerM, NoonepalleS, LuQ, et al. ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS)[J]. Adv Exp Med Biol, 2017,967:105-137. DOI: 10.1007/978-3-319-63245-2_8.
    [6] 邱煜程, 周显玉, 刘菲, 等. 间充质干细胞及其外泌体在移植中的应用进展[J].组织工程与重建外科杂志,2023,19(2):184-188. DOI: 10.3969/j.issn.1673-0364.2023.02.016.
    [7] YuT, LiuH, GaoM, et al. Dexmedetomidine regulates exosomal miR-29b-3p from macrophages and alleviates septic myocardial injury by promoting autophagy in cardiomyocytes via targeting glycogen synthase kinase3β[J/OL]. Burns Trauma, 2024,12:tkae042[2024-09-27].https://pubmed.ncbi.nlm.nih.gov/39502342/. DOI: 10.1093/burnst/tkae042.
    [8] 蒲倩, 修光辉, 孙洁, 等. 间充质干细胞外泌体在脓毒症多器官功能障碍中作用的研究进展[J].中华危重病急救医学,2021,33(6):757-760. DOI: 10.3760/cma.j.cn121430-20200908-00620.
    [9] HuQ, LyonCJ, FletcherJK, et al. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses[J]. Acta Pharm Sin B, 2021,11(6):1493-1512. DOI: 10.1016/j.apsb.2020.12.014.
    [10] JingW, WangH, ZhanL, et al. Extracellular vesicles, new players in sepsis and acute respiratory distress syndrome[J]. Front Cell Infect Microbiol, 2022,12:853840. DOI: 10.3389/fcimb.2022.853840.
    [11] HommaK, BazhanovN, HashimotoK, et al. Mesenchymal stem cell-derived exosomes for treatment of sepsis[J]. Front Immunol, 2023,14:1136964. DOI: 10.3389/fimmu.2023.1136964.
    [12] GongT, LiuYT, FanJ. Exosomal mediators in sepsis and inflammatory organ injury: unraveling the role of exosomes in intercellular crosstalk and organ dysfunction[J]. Mil Med Res, 2024,11(1):24. DOI: 10.1186/s40779-024-00527-6.
    [13] BaiX, LiJ, LiL, et al. Extracellular vesicles from adipose tissue-derived stem cells affect Notch-miR148a-3p axis to regulate polarization of macrophages and alleviate sepsis in mice[J]. Front Immunol, 2020,11:1391. DOI: 10.3389/fimmu.2020.01391.
    [14] DejagerL, PinheiroI, DejonckheereE, et al. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis?[J]. Trends Microbiol, 2011,19(4):198-208. DOI: 10.1016/j.tim.2011.01.001.
    [15] JiaoY, ZhangT, ZhangC, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury[J]. Crit Care, 2021,25(1):356. DOI: 10.1186/s13054-021-03775-3.
    [16] BaiX, HeT, LiuY, et al. Acetylation-dependent regulation of notch signaling in macrophages by SIRT1 affects sepsis development[J]. Front Immunol, 2018,9:762. DOI: 10.3389/fimmu.2018.00762.
    [17] 蔡维霞, 沈括, 曹涛, 等. 人脂肪间充质干细胞来源外泌体对脓毒症小鼠肺血管内皮细胞损伤的影响及其机制[J].中华烧伤与创面修复杂志,2022,38(3):266-275. DOI: 10.3760/cma.j.cn501120-20211020-00362.
    [18] ShenK, WangX, WangY, et al. miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury[J]. Redox Biol, 2023,62:102655. DOI: 10.1016/j.redox.2023.102655.
    [19] WuH, WangY, ZhangY, et al. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress[J]. Redox Biol, 2020,32:101500. DOI: 10.1016/j.redox.2020.101500.
    [20] XuH, QiQ, YanX. Myricetin ameliorates sepsis-associated acute lung injury in a murine sepsis model[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021,394(1):165-175. DOI: 10.1007/s00210-020-01880-8.
    [21] JinC, ChenJ, GuJ, et al. Gut-lymph-lung pathway mediates sepsis-induced acute lung injury[J]. Chin Med J (Engl), 2020,133(18):2212-2218. DOI: 10.1097/CM9.0000000000000928.
    [22] YehyaN, SmithL, ThomasNJ, et al. Definition, incidence, and epidemiology of pediatric acute respiratory distress syndrome: from the Second Pediatric Acute Lung Injury Consensus Conference[J]. Pediatr Crit Care Med, 2023,24(12 Suppl 2):S87-98. DOI: 10.1097/PCC.0000000000003161.
    [23] 赵松韵, 万志杰, 曹曦元, 等. 靶向DNA损伤应答在小细胞肺癌中的作用研究进展[J].解放军医学杂志,2022,47(8):838-844. DOI: 10.11855/j.issn.0577-7402.2022.08.0838.
    [24] 李林, 邢福席, 付全有, 等. 脓毒症急性肺损伤治疗的研究进展[J].中华医院感染学杂志,2024,34(1):149-155. DOI: 10.11816/cn.ni.2024-236123.
    [25] ZhangW, ChenH, XuZ, et al. Liensinine pretreatment reduces inflammation, oxidative stress, apoptosis, and autophagy to alleviate sepsis acute kidney injury[J]. Int Immunopharmacol, 2023,122:110563. DOI: 10.1016/j.intimp.2023.110563.
    [26] Bar-OrD, CarrickMM, MainsCW, et al. Sepsis, oxidative stress, and hypoxia: are there clues to better treatment?[J] Redox Rep, 2015,20(5):193-197. DOI: 10.1179/1351000215Y.0000000005.
    [27] JoffreJ, HellmanJ. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation[J]. Antioxid Redox Signal, 2021,35(15):1291-1307. DOI: 10.1089/ars.2021.0027.
    [28] WangX, ChenS, LuR, et al. Adipose-derived stem cell-secreted exosomes enhance angiogenesis by promoting macrophage M2 polarization in type 2 diabetic mice with limb ischemia via the JAK/STAT6 pathway[J]. Heliyon, 2022,8(11):e11495. DOI: 10.1016/j.heliyon.2022.e11495.
    [29] WestAP, BrodskyIE, RahnerC, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS[J]. Nature, 2011,472(7344):476-480. DOI: 10.1038/nature09973.
    [30] WestAP, Khoury-HanoldW, StaronM, et al. Mitochondrial DNA stress primes the antiviral innate immune response[J]. Nature, 2015,520(7548):553-557. DOI: 10.1038/nature14156.
    [31] WangZ, WhiteA, WangX, et al. Mitochondrial fission mediated cigarette smoke-induced pulmonary endothelial injury[J]. Am J Respir Cell Mol Biol, 2020,63(5):637-651. DOI: 10.1165/rcmb.2020-0008OC.
    [32] VidelaLA, MarimánA, RamosB, et al. Standpoints in mitochondrial dysfunction: underlying mechanisms in search of therapeutic strategies[J]. Mitochondrion, 2022,63:9-22. DOI: 10.1016/j.mito.2021.12.006.
    [33] HoffmannRF, ZarrintanS, BrandenburgSM, et al. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells[J]. Respir Res, 2013,14(1):97. DOI: 10.1186/1465-9921-14-97.
    [34] GalleyHF. Oxidative stress and mitochondrial dysfunction in sepsis[J]. Br J Anaesth, 2011, 107(1):57-64. DOI: 10.1093/bja/aer093.
    [35] XianH, LiuY, Rundberg NilssonA, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation[J]. Immunity, 2021,54(7):1463-1477.e11. DOI: 10.1016/j.immuni.2021.05.004.
    [36] ZhongZ, LiangS, Sanchez-LopezE, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation[J]. Nature, 2018,560(7717):198-203. DOI: 10.1038/s41586-018-0372-z.
    [37] XuZ, ShenJ, LinL, et al. Exposure to irregular microplastic shed from baby bottles activates the ROS/NLRP3/Caspase-1 signaling pathway, causing intestinal inflammation[J]. Environ Int, 2023,181:108296. DOI: 10.1016/j.envint.2023.108296.
    [38] Shang-GuanK, WangM, HtweN, et al. Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations[J]. Plant Physiol, 2018,176(3):2543-2556. DOI: 10.1104/pp.17.01637.
    [39] CaiS, ZhaoM, ZhouB, et al. Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction[J]. J Clin Invest, 2023,133(4)DOI: 10.1172/JCI159498.
  • 图  1  人脂肪间充质干细胞(ADSC)外泌体的鉴定。1A.可见清晰的囊泡呈茶托状结构 透射电子显微镜×40 000;1B.纳米颗粒跟踪分析仪检测显示粒径为60~150 nm

    注:图1B为横坐标经过lg处理的数据形成的描记图

    图  2  3组小鼠伤后24 h肺组织损伤情况和肺组织细胞的凋亡情况。2A、2B、2C.分别为正常对照组、单纯CLP组、CLP+ADSC外泌体组小鼠肺组织损伤情况,图2B较图2A中的肺组织水肿情况明显,炎症细胞数明显增多,图2C较图2B肺组织水肿明显改善,炎症细胞数明显减少 苏木精-伊红×100;2D、2E、2F.分别为正常对照组、单纯CLP组、CLP+ADSC外泌体组小鼠肺组织的细胞凋亡情况,图2E较图2D中的凋亡、坏死细胞数明显增加,图2F较图2E凋亡、坏死细胞数明显减少 异硫氰酸荧光素-4',6-二脒基-2-苯基吲哚×100

    注:盲肠结扎穿孔(CLP)+脂肪间充质干细胞(ADSC)外泌体组和单纯CLP组小鼠均进行组名相应的处理,正常对照组小鼠仅注射磷酸盐缓冲液;凋亡细胞阳性染色为绿色

    图  3  3组小鼠伤后24 h肺组织中巨噬细胞表型分布情况。3A、3B、3C.分别为正常对照组、单纯CLP组、CLP+ADSC外泌体组CD86(M1型巨噬细胞标志物)阳性细胞分别情况,图3B较图3A中的M1型巨噬细胞数明显增加,图3C较图3B中的M1型巨噬细胞数明显减少;3D、3E、3F.分别为正常对照组、单纯CLP组、CLP+ADSC外泌体组CD206(M2型巨噬细胞标志物)阳性细胞分别情况,图3E较图3D中的M2型巨噬细胞数明显增加,图3C较图3B中的M2型巨噬细胞数明显减少

    注:盲肠结扎穿孔(CLP)+脂肪间充质干细胞(ADSC)外泌体组和单纯CLP组小鼠均进行组名相应的处理,正常对照组小鼠仅注射磷酸盐缓冲液;细胞阳性染色均为棕色

    图  4  共培养12 h后RAW264.7细胞吞噬人脂肪间充质干细胞(ADSC)外泌体的情况 PKH26-4',6-二脒基-2-苯基吲哚×200。5A、5B、5C.分别为细胞中的外泌体染色、细胞核染色及复合染色情况,可见人ADSC外泌体成功被RAW264.7细胞吞噬

    注:人ADSC外泌体阳性染色为红色,细胞核阳性为蓝色

    图  5  培养12 h后3组RAW264.7细胞中线粒体膜电位情况。5A、5B、5C、5D.分别为空白对照组细胞呈蓝色荧光、绿色荧光、红色荧光及复合显色情况;5E、5F、5G、5H.分别为单纯LPS组细胞呈蓝色荧光、绿色荧光、红色荧光及复合显色情况;5I、5J、5K、5L.分别为LPS+ADSC外泌体组细胞呈蓝色荧光、绿色荧光、红色荧光及复合显色情况,图5F较图5B中的线粒体膜电位下降明显,图5J中的线粒体膜电位介于图5B与图5F之间,图5K中的正常线粒体荧光强度介于图5C与图5G之间,

    注:对LPS+ADSC外泌体组和单纯LPS组细胞进行组名相应的处理,对空白对照组细胞进行常规培养;细胞核阳性染色为蓝色,受损或膜电位下降的线粒体阳性染色为绿色,正常线粒体的阳性染色为红色

    Table  1.   实时荧光定量反转录PCR法检测RAW264.7细胞的各引物序列及产物大小

    基因名称引物序列(5'→3')产物大小(bp)
    IL-上游:TCCAGGATGAGGACATGAGCAC105
    下游:GAACGTCACACACCAGCAGGTTA
    iNOS上游:ACTACTGCTGGTGGTGACAA106
    下游:GAAGGTGTGGTTGAGTTCTCTAAG
    TNF-α上游:ACTCCAGGCGGTGCCTATGT160
    下游:GTGAGGGTCTGGGCCATAGAA
    ARG1上游:ACATTGGCTTGCGAGACGTA109
    下游:ATCACCTTGCCAATCCCCAG
    GAPDH上游:TGTGTCCGTCGTGGATCTGA150
    下游:TTGCTGTTGAAGTCGCAGGAG
    注:IL为白细胞介素,iNOS为诱导型一氧化氮合酶,TNF为肿瘤坏死因子,Arg1为精氨酸酶-1,GAPDH为甘油醛-3-磷酸脱氢酶
    下载: 导出CSV

    Table  2.   培养12 h后3组RAW264.7细胞M1/M2极化标志因子及炎症因子的mRNA表达量比较(x¯±s

    组别样本数TNF-αIL-1βArg1iNOS
    空白对照组31.01±0.171.00±0.091.00±0.051.00±0.04
    单纯LPS385.60±8.871648.67±91.950.84±0.102.46±0.33
    LPS+外泌体323.03±3.47382.33±31.261.35±0.071.44±0.07
    F190.96709.9236.5044.67
    P<0.001<0.001<0.001<0.001
    t116.5131.042.407.70
    P1<0.001<0.0010.077<0.001
    t211.3822.587.665.28
    P2<0.001<0.0010.0020.006
    注:对LPS+ADSC外泌体组和单纯LPS组细胞进行组名相应的处理,对空白对照组细胞进行常规培养;LPS为肉毒素/脂多糖,IL为白细胞介素,iNOS为诱导型一氧化氮合酶,TNF为肿瘤坏死因子,Arg1为精氨酸酶-1;F值、P值为组间总体比较所得,t1值、P1值为空白对照组与单纯LPS组各指标比较所得,t2值、P2值为单纯LPS组与LPS+外泌体组各指标比较所得
    下载: 导出CSV
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-27
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回