Volume 37 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Dong C,Yu Z,Liu W,et al.Establishment and validation of a clinical prediction model for infection risk at the placement sites of skin and soft tissue expanders[J].Chin J Burns,2021,37(9):846-852.DOI: 10.3760/cma.j.cn501120-20200619-00314.
Citation: Dong C,Yu Z,Liu W,et al.Establishment and validation of a clinical prediction model for infection risk at the placement sites of skin and soft tissue expanders[J].Chin J Burns,2021,37(9):846-852.DOI: 10.3760/cma.j.cn501120-20200619-00314.

Establishment and validation of a clinical prediction model for infection risk at the placement sites of skin and soft tissue expanders

doi: 10.3760/cma.j.cn501120-20200619-00314
Funds:

General Program of National Natural Science Foundation of China 81671925, 81971851

Shaanxi Science and Technology Plan of China 2018ZDXM-SF-081

Discipline Promotion Project of Xijing Hospital XJZT19D03

More Information
  •   Objective  To establish a clinical prediction model for infection risk at the placement sites of skin and soft tissue expanders (hereinafter termed as expanders) and to validate the predictive value of the model.  Methods  A retrospective observational study was conducted. Totally 2 934 patients who underwent skin and soft tissue dilatation surgery in the Department of Plastic Surgery of the First Affiliated Hospital of Air Force Medical University from January 2009 to December 2018 and met the selection criteria were included. There were 1 867 males and 1 067 females, with a median age of 18 years. Totally 3 053 skin and soft tissue expansion procedures were performed with 4 266 expanders implanted. The following indexes were selected as predictor variables, including patients' age, gender, marital status, ethnicity, hospital admission, surgical indication, disease duration, with/without history of smoking, history of drinking, history of blood transfusion, history of underlying diseases, and inability to use cephalosporin antibiotics due to allergy, number of expander in a single placement, rated volume of expander, water injection rate of expander in the first time, placement site of expander, anesthesia method, duration of operation, and with/without postoperative hematoma evacuation, and infection at the placement site of expander as the outcome variable. Univariate analysis of the data was performed using least absolute shrinkage and selection operator (LASSO) regression to screen the potential risk factors affecting infection at the placement sites of expanders, the factors selected by the univariate analysis were subjected to binary multivariate logistic regression analysis to screen the independent risk factors affecting infection at the placement sites of expanders, and a nomogram prediction model for the occurrence of infection at the placement sites of expanders was established. The C index and Hosmer-Lemeshow goodness of fit test were used to evaluate the discrimination and accuracy of the model, respectively, and the bootstrap resampling was used for internal verification.  Results  The results of LASSO regression showed that age, gender, hospital admission, surgical indication, disease duration, history of drinking, history of heart disease, history of viral hepatitis, history of hypertension, inability to use cephalosporin antibiotics due to allergy, number of expander in a single placement, rated volume of expander, placement site of expander, postoperative hematoma evacuation were the potential risk factors for infection at the placement sites of expanders (regression coefficient= - 0.005, 0.170, 0.999, 0.054, 0.510, - 0.003, 0.395, - 0.218, 0.029, 0.848, - 0.116, 0.175, 0.085, 0.202). Binary multivariate logistic regression analysis showed that male, emergency admission, disease duration ≤1 year, inability to use cephalosporin antibiotics due to allergy, rated volumes of expanders ≥200 mL and <400 mL or ≥400 mL, and expanders placed in the trunk or the limbs were the independent risks factors for infection at the placement sites of expanders (odds ratio=1.37, 3.21, 2.00, 2.47, 1.70, 1.73, 1.67, 2.16, 95% confidence interval=1.04 - 1.82, 1.09 - 8.34, 1.38 - 2.86, 1.29 - 4.41, 1.07 - 2.73, 1.02 - 2.94, 1.09 - 2.58, 1.07 - 4.10, P<0.05 or P<0.01). The C index for evaluating the discriminative degree of the model was 0.63, the Hosmer-Lemeshow goodness of fit test for evaluating the accuracy of the model showed P=0.685, and the C index for internal validation by the bootstrap resampling was 0.60.  Conclusions  Male, emergency admission, disease duration ≤1 year, inability to use cephalosporin antibiotics due to allergy, rated volume of expander ≥200 mL, and expanders placed in the trunk or the limbs are the independent risk factors for infection at the placement sites of expanders. The clinical prediction model for infection risk at the placement sites of expanders was successfully established based on these factors and showed a certain predictive effect.

     

  • loading
  • [1]
    MinP, LiJ, BrunettiB, et al. Pre-expanded bipedicled visor flap: an ideal option for the reconstruction of upper and lower lip defects postburn in Asian males[J/OL]. Burns Trauma, 2020, 8:tkaa005[2021-06-19]. https://pubmed.ncbi.nlm.nih.gov/32341918/. DOI: 10.1093/burnst/tkaa005.
    [2]
    KarimiH, LatifiNA, MomeniM, et al. Tissue expanders; review of indications, results and outcome during 15 years' experience[J]. Burns, 2019, 45(4):990-1004. DOI: 10.1016/j.burns.2018.11.017.
    [3]
    MaX, LiY, LiW, et al. Reconstruction of large postburn facial-scalp scars by expanded pedicled deltopectoral flap and random scalp flap: technique improvements to enlarge the reconstructive territory[J]. J Craniofac Surg, 2017, 28(6):1526-1530. DOI: 10.1097/SCS.0000000000003902.
    [4]
    HanY, ZhaoJ, TaoR, et al. Repair of craniomaxillofacial traumatic soft tissue defects with tissue expansion in the early stage[J]. J Craniofac Surg, 2017, 28(6):1477-1480. DOI: 10.1097/SCS.0000000000003852.
    [5]
    GosainAK, TurinSY, ChimH, et al. Salvaging the unavoidable: a review of complications in pediatric tissue expansion[J]. Plast Reconstr Surg, 2018, 142(3):759-768. DOI: 10.1097/PRS.0000000000004650.
    [6]
    HuangX, QuX, LiQ. Risk factors for complications of tissue expansion: a 20-year systematic review and meta-analysis[J]. Plast Reconstr Surg, 2011, 128(3):787-797. DOI: 10.1097/PRS.0b013e3182221372.
    [7]
    BjornsonLA, BucevskaM, VerchereC. Tissue expansion in pediatric patients: a 10-year review[J]. J Pediatr Surg, 2019, 54(7):1471-1476. DOI: 10.1016/j.jpedsurg.2018.09.002.
    [8]
    SueGR, SunBJ, LeeGK. Complications after two-stage expander implant breast reconstruction requiring reoperation: a critical analysis of outcomes[J]. Ann Plast Surg, 2018, 80(5S Suppl 5):S292-294. DOI: 10.1097/SAP.0000000000001382.
    [9]
    PatelPA, ElhadiHM, KitzmillerWJ, et al. Tissue expander complications in the pediatric burn patient: a 10-year follow-up[J]. Ann Plast Surg, 2014, 72(2):150-154. DOI: 10.1097/SAP.0b013e3182a884af.
    [10]
    MotamedS, NiaziF, AtarianS, et al. Post-burn head and neck reconstruction using tissue expanders[J]. Burns, 2008, 34(6):878-884. DOI: 10.1016/j.burns.2007.11.018.
    [11]
    As'adiK, EmamiSA, SalehiSH, et al. A randomized controlled trial comparing endoscopic-assisted versus open neck tissue expander placement in reconstruction of post-burn facial scar deformities[J]. Aesthetic Plast Surg, 2016, 40(4):526-534. DOI: 10.1007/s00266-016-0644-7.
    [12]
    TangS, WuX, SunZ, et al. Staged reconstructive treatment for extensive irregular cicatricial alopecia after burn[J]. Medicine (Baltimore), 2018, 97(52):e13522. DOI: 10.1097/MD.0000000000013522.
    [13]
    Abellan LopezM, SerrorK, ChaouatM, et al. Tissue expansion of the lower limb: retrospective study of 141 procedures in burn sequelae[J]. Burns, 2018, 44(7):1851-1857. DOI: 10.1016/j.burns.2018.03.021.
    [14]
    AdlerN, EliaJ, BilligA, et al. Complications of nonbreast tissue expansion: 9 years experience with 44 adult patients and 119 pediatric patients[J]. J Pediatr Surg, 2015, 50(9):1513-1516. DOI: 10.1016/j.jpedsurg.2015.03.055.
    [15]
    TayyabaFU, AminMM, Attaur-RasoolS, et al. Reconstruction of post burn scalp alopecia by using expanded hair-bearing scalp flaps[J]. Pak J Med Sci, 2015, 31(6):1405-1410. DOI: 10.12669/pjms.316.7927.
    [16]
    MargulisA, BilligA, EliaJ, et al. Complications of post-burn tissue expansion reconstruction: 9 years experience with 42 pediatric and 26 adult patients[J]. Isr Med Assoc J, 2017, 19(2):100-104.
    [17]
    HannaKR, TiltA, HollandM, et al. Reducing infectious complications in implant based breast reconstruction: impact of early expansion and prolonged drain use[J]. Ann Plast Surg, 2016, 76 Suppl 4:S312-315. DOI: 10.1097/SAP.0000000000000760.
    [18]
    SmolleC, TucaA, WurzerP, et al. Complications in tissue expansion: a logistic regression analysis for risk factors[J]. Burns, 2017, 43(6):1195-1202. DOI: 10.1016/j.burns.2016.08.030.
    [19]
    HuangYQ, LiangCH, HeL, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. J Clin Oncol, 2016, 34(18):2157-2164. DOI: 10.1200/JCO.2015.65.9128.
    [20]
    LaValleyMP. Logistic regression[J]. Circulation, 2008, 117(18):2395-2399. DOI: 10.1161/CIRCULATIONAHA.106.682658.
    [21]
    AlbaAC, AgoritsasT, WalshM, et al. Discrimination and calibration of clinical prediction models: users' guides to the medical literature[J]. JAMA, 2017, 318(14):1377-1384. DOI: 10.1001/jama.2017.12126.
    [22]
    WangH, ZhangL, LiuZ, et al. Predicting medication nonadherence risk in a Chinese inflammatory rheumatic disease population: development and assessment of a new predictive nomogram[J]. Patient Prefer Adherence, 2018, 12:1757-1765. DOI: 10.2147/PPA.S159293.
    [23]
    KongL, CaoJ, ZhangY, et al. Risk factors for periprosthetic joint infection following primary total hip or knee arthroplasty: a meta-analysis[J]. Int Wound J, 2017, 14(3):529-536. DOI: 10.1111/iwj.12640.
    [24]
    ZhangJ, ZhaoT, LongS, et al. Risk factors for postoperative infection in Chinese lung cancer patients: a meta-analysis[J]. J Evid Based Med, 2017, 10(4):255-262. DOI: 10.1111/jebm.12276.
    [25]
    AghdassiS, SchröderC, GastmeierP. Gender-related risk factors for surgical site infections. Results from 10 years of surveillance in Germany[J]. Antimicrob Resist Infect Control, 2019, 8:95. DOI: 10.1186/s13756-019-0547-x.
    [26]
    GoldMH, McGuireM, MustoeTA, et al. Updated international clinical recommendations on scar management: part 2--algorithms for scar prevention and treatment[J]. Dermatol Surg, 2014, 40(8):825-831. DOI: 10.1111/dsu.0000000000000050.
    [27]
    OtaD, FukuuchiA, IwahiraY, et al. Identification of complications in mastectomy with immediate reconstruction using tissue expanders and permanent implants for breast cancer patients[J]. Breast Cancer, 2016, 23(3):400-406. DOI: 10.1007/s12282-014-0577-4.
    [28]
    Johnson-JahangirH, AgrawalN. Perioperative antibiotic use in cutaneous surgery[J]. Dermatol Clin, 2019, 37(3):329-340. DOI: 10.1016/j.det.2019.03.003.
    [29]
    常宏, 周毕峰, 崔鑫,等. 整形病区扩张器置入部位感染病原菌分析与感染的临床治疗[J]. 中华整形外科杂志, 2016, 32(3): 191-195. DOI: 10.3760/cma.j.issn.1009-4598.2016.03.008.
    [30]
    RiggioE, ToffoliE, TartaglioneC, et al. Local safety of immediate reconstruction during primary treatment of breast cancer. Direct-to-implant versus expander-based surgery[J]. J Plast Reconstr Aesthet Surg, 2019, 72(2):232-242. DOI: 10.1016/j.bjps.2018.10.016.
    [31]
    AzziJL, ThabetC, AzziAJ, et al. Complications of tissue expansion in the head and neck[J]. Head Neck, 2020, 42(4):747-762. DOI: 10.1002/hed.26017.
    [32]
    NickelKJ, Van SlykeAC, KnoxAD, et al. Tissue expansion for severe foot and ankle deformities: a 16-year review[J]. Plast Surg (Oakv), 2018, 26(4):244-249. DOI: 10.1177/2292550317749510.
    [33]
    DongC, ZhuM, HuangL, et al. Risk factors for tissue expander infection in scar reconstruction: a retrospective cohort study of 2374 consecutive cases[J/OL]. Burns Trauma, 2021, 8:tkaa037[2021-08-01]. https://pubmed.ncbi.nlm.nih.gov/33426134/. DOI: 10.1093/burnst/tkaa037.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (593) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return