Volume 37 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Liu KT,Hu DH.Research advances on the application of biocompatible materials in treating diabetic wounds[J].Chin J Burns,2021,37(9):889-894.DOI: 10.3760/cma.j.cn501120-20200619-00316.
Citation: Liu KT,Hu DH.Research advances on the application of biocompatible materials in treating diabetic wounds[J].Chin J Burns,2021,37(9):889-894.DOI: 10.3760/cma.j.cn501120-20200619-00316.

Research advances on the application of biocompatible materials in treating diabetic wounds

doi: 10.3760/cma.j.cn501120-20200619-00316
Funds:

Youth Science Foundation of National Natural Science Foundation of China 81501666

More Information
  • At present, a variety of biocompatible materials have been applied in treating diabetic wounds, and some biocompatible materials have played an important role. Although biocompatible materials have advantages such as decreasing exposure and tension of wounds, and providing microenvironment to stimulate cell proliferation and migration, they also have disadvantages such as unstable effects and unclear mechanism. Therefore, this article reviews the recent advances on the biocompatible materials for the treatment of diabetic wounds, and discusses the possible development directions in the field of biocompatible materials.

     

  • loading
  • [1]
    罗高兴, 吴军. 现代功能材料促进皮肤创面修复[J]. 中华烧伤杂志, 2020, 36(12): 1113-1116. DOI: 10.3760/cma.j.cn501120-20201015-00436.
    [2]
    FuiLW,LokMPW, GovindasamyV, et al. Understanding the multifaceted mechanisms of diabetic wound healing and therapeutic application of stem cells conditioned medium in the healing process[J]. J Tissue Eng Regen Med, 2019, 13(12): 2218-2233. DOI: 10.1002/term.2966.
    [3]
    SinghO,GuptaSS,SoniM, et al.Collagen dressing versus conventional dressings in burn and chronic wounds: a retrospective study[J].J Cutan Aesthet Surg,2011,4(1):12-16.DOI: 10.4103/0974-2077.79180.
    [4]
    MiguelSP,RibeiroMP, BrancalH, et al. Thermoresponsive chitosan-agarose hydrogel for skin regeneration[J]. Carbohydr Polym, 2014, 111: 366-373. DOI: 10.1016/j.carbpol.2014.04.093.
    [5]
    WeiSK,XuPC,YaoZX, et al.A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes[J].Acta Biomater,2021,124:205-218.DOI: 10.1016/j.actbio.2021.01.046.
    [6]
    WangM,WangCG, ChenM, et al. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release[J]. ACS Nano, 2019, 13(9): 10279-10293. DOI: 10.1021/acsnano.9b03656.
    [7]
    屠卓隆,林才.姜黄素对糖尿病创面的促愈合作用及其机制研究进展[J].中华烧伤杂志,2021,37(4):391-394.DOI: 10.3760/cma.j.cn501120-20200224-00089.
    [8]
    QuJ,ZhaoX, LiangYP, et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing[J]. Biomaterials, 2018, 183: 185-199. DOI: 10.1016/j.biomaterials.2018.08.044.
    [9]
    OkonkwoUA,DiPietroLA.Diabetes and wound angiogenesis[J].Int J Mol Sci,2017,18(7):1419.DOI: 10.3390/ijms18071419.
    [10]
    HuSC, LanCE. High-glucose environment disturbs the physiologic functions of keratinocytes: focusing on diabetic wound healing[J]. J Dermatol Sci, 2016, 84(2): 121-127. DOI: 10.1016/j.jdermsci.2016.07.008.
    [11]
    ShiekhPA,SinghA, KumarA. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing[J]. Biomaterials, 2020, 249: 120020. DOI: 10.1016/j.biomaterials.2020.120020.
    [12]
    GaoWD, JinWW, LiYN, et al. A highly bioactive bone extracellular matrix-biomimetic nanofibrous system with rapid angiogenesis promotes diabetic wound healing[J]. J Mater Chem B, 2017, 5(35): 7285-7296. DOI: 10.1039/c7tb01484h.
    [13]
    KasiewiczLN, WhiteheadKA. Recent advances in biomaterials for the treatment of diabetic foot ulcers[J]. Biomater Sci, 2017,5(10):1962-1975. DOI: 10.1039/c7bm00264e.
    [14]
    CastañoO,Pérez-AmodioS,Navarro-RequenaC, et al.Instructive microenvironments in skin wound healing: biomaterials as signal releasing platforms[J].Adv Drug Deliv Rev,2018,129:95-117.DOI: 10.1016/j.addr.2018.03.012.
    [15]
    JeongS,KimB, ParkM, et al. Improved diabetic wound healing by EGF encapsulation in gelatin-alginate coacervates[J]. Pharmaceutics, 2020, 12(4): 334. DOI: 10.3390/pharmaceutics12040334.
    [16]
    LuQQ,LiMM,ZouY, et al.Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis[J].J Control Release,2014,174:43-50.DOI: 10.1016/j.jconrel.2013.11.007.
    [17]
    DingS, XuY,YanX, et al.Effect of collagen scaffold with Bcl-2-modified adipose-derived stem cells on diabetic mice wound healing[J].Int J Low Extrem Wounds,2020,19(2):139-147.DOI: 10.1177/1534734619880055.
    [18]
    ZhongSP,ZhangYZ, LimCT. Tissue scaffolds for skin wound healing and dermal reconstruction[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2010, 2(5): 510-525. DOI: 10.1002/wnan.100.
    [19]
    NieuwdorpM,HollemanF, de GrootE, et al. Perturbation of hyaluronan metabolism predisposes patients with type 1 diabetes mellitus to atherosclerosis[J]. Diabetologia, 2007, 50(6): 1288-1293. DOI: 10.1007/s00125-007-0666-4.
    [20]
    BohnG,LidenB, SchultzG, et al. Ovine-based collagen matrix dressing: next-generation collagen dressing for wound care[J]. Adv Wound Care (New Rochelle), 2016, 5(1): 1-10. DOI: 10.1089/wound.2015.0660.
    [21]
    BriquezPS,HubbellJA, MartinoMM. Extracellular matrix-inspired growth factor delivery systems for skin wound healing[J]. Adv Wound Care (New Rochelle), 2015, 4(8): 479-489. DOI: 10.1089/wound.2014.0603.
    [22]
    薛春利,胡志成,杨祖贤,等.异体脱细胞真皮基质治疗糖尿病足溃疡临床效果荟萃分析[J].中华烧伤杂志,2016,32(12):725-729.DOI: 10.3760/cma.j.issn.1009-2587.2016.12.005.
    [23]
    GuestJF,WeidlichD, SinghH, et al. Cost-effectiveness of using adjunctive porcine small intestine submucosa tri-layer matrix compared with standard care in managing diabetic foot ulcers in the US[J]. J Wound Care, 2017, 26(Suppl 1): S12-24. DOI: 10.12968/jowc.2017.26.Sup1.S12.
    [24]
    FrykbergRG,CazzellSM,Arroyo-RiveraJ, et al.Evaluation of tissue engineering products for the management of neuropathic diabetic foot ulcers: an interim analysis[J].J Wound Care,2016,25 Suppl 7:S18-25.DOI: 10.12968/jowc.2016.25.7.S18.
    [25]
    AlvarezOM,SmithT, GilbertTW, et al. Diabetic foot ulcers treated with porcine urinary bladder extracellular matrix and total contact cast: interim analysis of a randomized, controlled trial[J]. Wounds, 2017, 29(5): 140-146.
    [26]
    TurnerNJ, BadylakSF. The use of biologic scaffolds in the treatment of chronic nonhealing wounds[J]. Adv Wound Care (New Rochelle), 2015, 4(8): 490-500. DOI: 10.1089/wound.2014.0604.
    [27]
    LantisJC,SnyderR,ReyzelmanAM, et al.Fetal bovine acellular dermal matrix for the closure of diabetic foot ulcers: a prospective randomised controlled trial[J].J Wound Care,2021,30(Suppl 7):S18-27.DOI: 10.12968/jowc.2021.30.Sup7.S18.
    [28]
    KarrJC. Retrospective comparison of diabetic foot ulcer and venous stasis ulcer healing outcome between a dermal repair scaffold (PriMatrix) and a bilayered living cell therapy (Apligraf)[J]. Adv Skin Wound Care, 2011, 24(3): 119-125. DOI: 10.1097/01.ASW.0000395038.28398.88.
    [29]
    YangHY,FierroF, SoM, et al. Combination product of dermal matrix, human mesenchymal stem cells, and timolol promotes diabetic wound healing in mice[J]. Stem Cells Transl Med, 2020, 9(11): 1353-1364. DOI: 10.1002/sctm.19-0380.
    [30]
    LiuH,LiuHP, DengXY, et al. CXCR4 antagonist delivery on decellularized skin scaffold facilitates impaired wound healing in diabetic mice by increasing expression of SDF-1 and enhancing migration of CXCR4-positive cells[J]. Wound Repair Regen, 2017, 25(4): 652-664. DOI: 10.1111/wrr.12552.
    [31]
    KaymakcalanOE,AbadeerA,GoldufskyJW, et al.Topical α-gal nanoparticles accelerate diabetic wound healing[J].Exp Dermatol,2020,29(4):404-413.DOI: 10.1111/exd.14084.
    [32]
    WuYY,JiaoYP, XiaoLL, et al. Experimental study on effects of adipose-derived stem cell-seeded silk fibroin chitosan film on wound healing of a diabetic rat model[J]. Ann Plast Surg, 2018, 80(5): 572-580. DOI: 10.1097/SAP.0000000000001355.
    [33]
    MaZX,Garrido-MaestuA, JeongKC. Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: a review[J]. Carbohydr Polym, 2017, 176: 257-265. DOI: 10.1016/j.carbpol.2017.08.082.
    [34]
    AhmedR,TariqM, AliI, et al. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing[J]. Int J Biol Macromol, 2018, 120 (Pt A): 385-393. DOI: 10.1016/j.ijbiomac.2018.08.057.
    [35]
    YiS,XuL, GuXS. Scaffolds for peripheral nerve repair and reconstruction[J]. Exp Neurol, 2019, 319: 112761. DOI: 10.1016/j.expneurol.2018.05.016.
    [36]
    IlhanE,CesurS,GulerE, et al.Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material[J].Int J Biol Macromol,2020,161:1040-1054.DOI: 10.1016/j.ijbiomac.2020.06.086.
    [37]
    WangT,ZhengY,ShiYJ, et al.pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity[J].Drug Deliv Transl Res,2019,9(1):227-239.DOI: 10.1007/s13346-018-00609-8.
    [38]
    TellecheaA,SilvaEA, MinJH, et al. Alginate and DNA gels are suitable delivery systems for diabetic wound healing[J]. Int J Low Extrem Wounds, 2015, 14(2): 146-153. DOI: 10.1177/1534734615580018.
    [39]
    WawrzyńskaE,KubiesD.Alginate matrices for protein delivery - a short review[J].Physiol Res,2018,67(Suppl 2):S319-334.DOI: 10.33549/physiolres.933980.
    [40]
    GuF,AmsdenB, NeufeldR. Sustained delivery of vascular endothelial growth factor with alginate beads[J]. J Control Release, 2004, 96(3): 463-472. DOI: 10.1016/j.jconrel.2004.02.021.
    [41]
    KimJE,LeeJH, KimSH, et al. Skin regeneration with self-assembled peptide hydrogels conjugated with substance P in a diabetic rat model[J]. Tissue Eng Part A, 2018, 24(1/2): 21-33. DOI: 10.1089/ten.TEA.2016.0517.
    [42]
    KoutsopoulosS.Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications[J].J Biomed Mater Res A,2016,104(4):1002-1016.DOI: 10.1002/jbm.a.35638.
    [43]
    CarrejoNC,MooreAN, Lopez SilvaTL, et al. Multidomain peptide hydrogel accelerates healing of full-thickness wounds in diabetic mice[J]. ACS Biomater Sci Eng, 2018, 4(4): 1386-1396. DOI: 10.1021/acsbiomaterials.8b00031.
    [44]
    HiewVV,SimatSFB, TeohPL. The advancement of biomaterials in regulating stem cell fate[J]. Stem Cell Rev Rep, 2018, 14(1): 43-57. DOI: 10.1007/s12015-017-9764-y.
    [45]
    ChereddyKK,VandermeulenG,PréatV.PLGA based drug delivery systems: promising carriers for wound healing activity[J].Wound Repair Regen,2016,24(2):223-236.DOI: 10.1111/wrr.12404.
    [46]
    Mohiti-AsliM,SahaS, MurphySV, et al. Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(2): 327-339. DOI: 10.1002/jbm.b.33520.
    [47]
    CuiS,SunX, LiK, et al. Polylactide nanofibers delivering doxycycline for chronic wound treatment[J]. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109745. DOI: 10.1016/j.msec.2019.109745.
    [48]
    PorporatoPE,PayenVL, De SaedeleerCJ, et al. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice[J]. Angiogenesis, 2012, 15(4): 581-592. DOI: 10.1007/s10456-012-9282-0.
    [49]
    YuMY,HuangJH, ZhuTH, et al. Liraglutide-loaded PLGA/gelatin electrospun nanofibrous mats promote angiogenesis to accelerate diabetic wound healing via the modulation of miR-29b-3p[J]. Biomater Sci, 2020, 8(15): 4225-4238. DOI: 10.1039/d0bm00442a.
    [50]
    ZhengZF,LiuYS,HuangWH, et al.Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing[J].Artif Cells Nanomed Biotechnol,2018,46(Suppl 2):S493-501.DOI: 10.1080/21691401.2018.1460372.
    [51]
    AgnolLD,Gonzalez DiasFT,NicolettiNF, et al.Polyurethane as a strategy for annulus fibrosus repair and regeneration: a systematic review[J].Regen Med,2018,13(5):611-626.DOI: 10.2217/rme-2018-0003.
    [52]
    van LithR,GregoryEK, YangJ, et al. Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues[J]. Biomaterials, 2014, 35(28): 8113-8122. DOI: 10.1016/j.biomaterials.2014.06.004.
    [53]
    XiaoJS,ChenSY, YiJ, et al. A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes[J]. Adv Funct Mater, 2017, 27(1): 1604872. DOI: 10.1002/adfm.201604872.
    [54]
    JinX,ShangYY, ZouYY, et al. Injectable hypoxia-induced conductive hydrogel to promote diabetic wound healing[J]. ACS Appl Mater Interfaces, 2020, 12(51): 56681-56691. DOI: 10.1021/acsami.0c13197.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (295) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return