Citation: | Lyu SJ,Fan RH,Wu D,et al.Effects and cell signaling mechanism of glutamine on rat cardiomyocytes intervened with serum from burned rat[J].Chin J Burns,2021,37(12):1149-1157.DOI: 10.3760/cma.j.cn501120-20210601-00208. |
[1] |
彭曦. 烧伤高代谢机制的再认识及调控策略[J].中华烧伤杂志,2013,29(2):139-143. DOI: 10.3760/cma.j.issn.1009-2587.2013.02.012.
|
[2] |
黄跃生. 自噬与严重烧伤后心肌缺血缺氧损害[J].中华烧伤杂志,2018,34(1):3-7. DOI: 10.3760/cma.j.issn.1009-2587.2018.01.002.
|
[3] |
VermaA, SumiS, SeerviM. Heat shock proteins-driven stress granule dynamics: yet another avenue for cell survival[J]. Apoptosis, 2021,26(7/8):371-384. DOI: 10.1007/s10495-021-01678-w.
|
[4] |
KurashovaNA, MadaevaIM, KolesnikovaLI. Expression of heat shock proteins HSP70 under oxidative stress[J]. Adv Gerontol, 2019,32(4):502-508.
|
[5] |
吕尚军, 张勇, 孙勇, 等. 甘氨酰谷氨酰胺二肽对烧伤大鼠心功能的保护作用[J].中华烧伤杂志,2007,23(4):244-248. DOI: 10.3760/cma.j.issn.1009-2587.2007.04.002.
|
[6] |
彭曦. 重视谷氨酰胺在烧伤临床的规范应用[J].肠外与肠内营养,2021,28(1):1-4. DOI: 10.16151/j.1007-810x.2021.01.001.
|
[7] |
KimuraN, TokunagaC, DalalS, et al. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway[J]. Genes Cells, 2003,8(1):65-79. DOI: 10.1046/j.1365-2443.2003.00615.x.
|
[8] |
SaraviaJ, RaynorJL, ChapmanNM, et al. Signaling networks in immunometabolism[J]. Cell Res, 2020,30(4):328-342. DOI: 10.1038/s41422-020-0301-1.
|
[9] |
RindomE, KristensenAM, OvergaardK, et al. Estimation of p70S6K Thr389 and 4E-BP1 Thr37/46 phosphorylation support dependency of tension per se in a dose-response relationship for downstream mTORC1 signalling[J]. Acta Physiol (Oxf), 2020,229(1):e13426. DOI: 10.1111/apha.13426.
|
[10] |
HuangHL, LongLY, ZhouPP, et al. mTOR signaling at the crossroads of environmental signals and T-cell fate decisions[J]. Immunol Rev, 2020,295(1):15-38. DOI: 10.1111/imr.12845.
|
[11] |
GonzálezA, HallMN, LinSC, et al. AMPK and TOR: the Yin and Yang of cellular nutrient sensing and growth control[J]. Cell Metab, 2020,31(3):472-492. DOI: 10.1016/j.cmet.2020.01.015.
|
[12] |
MacFieJ, McNaughtC. Glutamine and gut barrier function[J]. Nutrition, 2002,18(5):433-434. DOI: 10.1016/s0899-9007(02)00766-9.
|
[13] |
YangYJ, LiuMM, ZhangY, et al. Effectiveness and mechanism study of glutamine on alleviating hypermetabolism in burned rats[J]. Nutrition, 2020,79/80:110934. DOI: 10.1016/j.nut.2020.110934.
|
[14] |
YuHD, ZhangYM, ZhangZY, et al. Towards identification of molecular mechanism in which the overexpression of wheat cytosolic and plastid glutamine synthetases in tobacco enhanced drought tolerance[J]. Plant Physiol Biochem, 2020,151:608-620. DOI: 10.1016/j.plaphy.2020.04.013.
|
[15] |
XiaY, WenHY, YoungME, et al. Mammalian target of rapamycin and protein kinase A signaling mediate the cardiac transcriptional response to glutamine[J]. J Biol Chem, 2003,278(15):13143-13150. DOI: 10.1074/jbc.M208500200.
|
[16] |
ShawRJ. mTOR signaling: RAG GTPases transmit the amino acid signal[J]. Trends Biochem Sci, 2008,33(12):565-568. DOI: 10.1016/j.tibs.2008.09.005.
|
[17] |
KameiY, HatazawaY, UchitomiR, et al. Regulation of skeletal muscle function by amino acids[J]. Nutrients, 2020,12(1):261.DOI: 10.3390/nu12010261.
|
[18] |
LaplanteM, SabatiniDM. mTOR signaling in growth control and disease[J]. Cell, 2012,149(2):274-293. DOI: 10.1016/j.cell.2012.03.017.
|
[19] |
TafurL, KefauverJ, LoewithR. Structural insights into TOR signaling[J]. Genes (Basel), 2020,11(8):885.DOI: 10.3390/genes11080885.
|
[20] |
SzwedA, KimE, JacintoE. Regulation and metabolic functions of mTORC1 and mTORC2[J]. Physiol Rev, 2021,101(3):1371- 1426. DOI: 10.1152/physrev.00026.2020.
|
[21] |
SaxtonRA, SabatiniDM. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017,168(6):960-976. DOI: 10.1016/j.cell.2017.02.004.
|
[22] |
ParkJH, LeeG, BlenisJ. Structural insights into the activation of mTORC1 on the lysosomal surface[J]. Trends Biochem Sci, 2020,45(5):367-369. DOI: 10.1016/j.tibs.2020.02.004.
|
[23] |
Francois-VaughanH, AdebayoAO, BrilliantKE, et al. Persistent effect of mTOR inhibition on preneoplastic foci progression and gene expression in a rat model of hepatocellular carcinoma[J]. Carcinogenesis, 2016,37(4):408-419. DOI: 10.1093/carcin/bgw016.
|
[24] |
YangHJ, RudgeDG, KoosJD, et al. mTOR kinase structure, mechanism and regulation[J]. Nature, 2013,497(7448):217-223. DOI: 10.1038/nature12122.
|
[25] |
ZhuJ, WangYF, ChaiXM, et al. Exogenous NADPH ameliorates myocardial ischemia-reperfusion injury in rats through activating AMPK/mTOR pathway[J]. Acta Pharmacol Sin, 2020,41(4):535-545. DOI: 10.1038/s41401-019-0301-1.
|
[26] |
ItoN, RueggUT, TakedaS. ATP-induced increase in intracellular calcium levels and subsequent activation of mTOR as regulators of skeletal muscle hypertrophy[J]. Int J Mol Sci, 2018,19(9):2804.DOI: 10.3390/ijms19092804.
|
[27] |
ParrottaL, CrestiM, CaiG. Heat-shock protein 70 binds microtubules and interacts with kinesin in tobacco pollen tubes[J]. Cytoskeleton (Hoboken), 2013,70(9):522-537. DOI: 10.1002/cm.21134.
|
[28] |
YuanAT, KorkolaNC, WongDL, et al. Metallothionein Cd4S11 cluster formation dominates in the protection of carbonic anhydrase[J]. Metallomics, 2020,12(5):767-783. DOI: 10.1039/d0mt00023j.
|
[29] |
YangLF, MaJP, TanY, et al. Cardiac-specific overexpression of metallothionein attenuates L-NAME-induced myocardial contractile anomalies and apoptosis[J]. J Cell Mol Med, 2019,23(7):4640-4652. DOI: 10.1111/jcmm.14375.
|
[30] |
党永明, 房亚东, 胡炯宇, 等.成体大鼠心肌细胞微管解聚对线粒体分布及能量代谢的影响[J] . 中华烧伤杂志,2010,26(1): 18-22. DOI: 10.3760/cma.j.issn.1009-2587.2010.01.006.
|
[31] |
XiangF, MaSY, LvYL, et al. Tumor necrosis factor receptor- associated protein 1 regulates hypoxia-induced apoptosis through a mitochondria-dependent pathway mediated by cytochrome c oxidase subunit Ⅱ[J/OL]. Burns Trauma, 2019,7:16[2021-06-01]. https://pubmed.ncbi.nlm.nih.gov/31143823/.DOI: 10.1186/s41038-019- 0154-3.
|
[32] |
滕苗, 黄跃生, 郑霁, 等. 微管干预剂对大鼠缺氧心肌细胞能量生成的影响[J].中华烧伤杂志,2007,23(3):164-167. DOI: 10.3760/cma.j.issn.1009-2587.2007.03.002.
|
[33] |
BuruteM, KapiteinLC. Cellular logistics: unraveling the interplay between microtubule organization and intracellular transport[J]. Annu Rev Cell Dev Biol, 2019,35:29-54. DOI: 10.1146/annurev-cellbio-100818-125149.
|