Volume 37 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Lyu GZ,Zhao P.New bioactive materials for promoting wound repair and skin regeneration[J].Chin J Burns,2021,37(12):1105-1109.DOI: 10.3760/cma.j.cn501120-20211029-00373.
Citation: Lyu GZ,Zhao P.New bioactive materials for promoting wound repair and skin regeneration[J].Chin J Burns,2021,37(12):1105-1109.DOI: 10.3760/cma.j.cn501120-20211029-00373.

New bioactive materials for promoting wound repair and skin regeneration

doi: 10.3760/cma.j.cn501120-20211029-00373
Funds:

General Program of National Natural Science Foundation of China 81671912

Clinical Frontier Technology Program of Social Development of Science and Technology Agency of Jiangsu Province of China BE2018626

More Information
  • Corresponding author: Lyu Guozhong, Email: luguozhong@hotmail.com
  • Received Date: 2021-10-29
  • The modulation of microenvironment is a key technology towards promoting wound repair and skin regeneration. In recent years, a series of new bioactive materials that modulate the microenvironment and cell behaviors have been developed, demonstrating highly efficient capability of inducing wound repair and skin appendage regeneration. This article summarizes the research development of related new bioactive materials and their mechanisms of action.

     

  • loading
  • [1]
    FinnertyCC,JeschkeMG,BranskiLK,et al.Hypertrophic scarring: the greatest unmet challenge after burn injury[J].Lancet,2016,388(10052):1427-1436.DOI: 10.1016/S0140-6736(16)31406-4.
    [2]
    SenCK.Human wound and its burden: updated 2020 compendium of estimates[J].Adv Wound Care (New Rochelle),2021,10(5):281-292.DOI: 10.1089/wound.2021.0026.
    [3]
    ClarkR.To scar or not to scar[J].N Engl J Med,2021,385(5):469-471.DOI: 10.1056/NEJMcibr2107204.
    [4]
    MooreAL,MarshallCD,BarnesLA,et al.Scarless wound healing: transitioning from fetal research to regenerative healing[J].Wiley Interdiscip Rev Dev Biol,2018,7(2): 10.1002/wdev.309.DOI: 10.1002/wdev.309.
    [5]
    CastañoO,Pérez-AmodioS,Navarro-RequenaC,et al.Instructive microenvironments in skin wound healing: biomaterials as signal releasing platforms[J].Adv Drug Deliv Rev,2018,129:95-117.DOI: 10.1016/j.addr.2018.03.012.
    [6]
    TracyLE,MinasianRA,CatersonEJ.Extracellular matrix and dermal fibroblast function in the healing wound[J].Adv Wound Care (New Rochelle),2016,5(3):119-136.DOI: 10.1089/wound.2014.0561.
    [7]
    程飚,付小兵.微环境控制是实现创面完美修复的必由之路[J].中华烧伤杂志,2020,36(11):1003-1008.DOI: 10.3760/cma.j.cn501120-20201009-00429.
    [8]
    HynesRO.The extracellular matrix: not just pretty fibrils[J].Science,2009,326(5957):1216-1219.DOI: 10.1126/science.1176009.
    [9]
    JulierZ,ParkAJ,BriquezPS,et al.Promoting tissue regeneration by modulating the immune system[J].Acta Biomater,2017,53:13-28.DOI: 10.1016/j.actbio.2017.01.056.
    [10]
    SunG.Pro-regenerative hydrogel restores scarless skin during cutaneous wound healing[J].Adv Healthc Mater,2017,6(23).DOI: 10.1002/adhm.201700659.
    [11]
    HaddadAG,GiatsidisG,OrgillDP,et al.Skin substitutes and bioscaffolds: temporary and permanent coverage[J].Clin Plast Surg,2017,44(3):627-634.DOI: 10.1016/j.cps.2017.02.019.
    [12]
    KraemerBA. Management of complex distal lower extremity wounds using a porcine urinary bladder matrix (UBM-ECM) [M]// Shiffman MA, Low M. Plastic and thoracic surgery, orthopedics and ophthalmology. Cham: Springer,2018: 3-29. DOI: 10.1007/15695_2017_60.
    [13]
    赵朋,杨敏烈,储国平,等.猪膀胱脱细胞基质和猪脱细胞真皮基质对糖尿病小鼠全层皮肤缺损创面愈合的影响[J].中华烧伤杂志,2020,36(12):1130-1138.DOI: 10.3760/cma.j.cn501120-20200901-00399.
    [14]
    HuleihelL,HusseyGS,NaranjoJD,et al.Matrix-bound nanovesicles within ECM bioscaffolds[J].Sci Adv,2016,2(6):e1600502.DOI: 10.1126/sciadv.1600502.
    [15]
    ValerioIL,CampbellP,SabinoJ,et al.The use of urinary bladder matrix in the treatment of trauma and combat casualty wound care[J].Regen Med,2015,10(5):611-622.DOI: 10.2217/rme.15.34.
    [16]
    HsuKF,ChiuYL,ChiaoHY,et al.Negative-pressure wound therapy combined with artificial dermis (Terudermis) followed by split-thickness skin graft might be an effective treatment option for wounds exposing tendon and bone: a retrospective observation study[J].Medicine (Baltimore),2021,100(14):e25395.DOI: 10.1097/MD.0000000000025395.
    [17]
    WolfMT, GangulyS, WangTL, et al. A biologic scaffold-associated type 2 immune microenvironment inhibits tumor formation and synergizes with checkpoint immunotherapy [J]. Sci Transl Med, 2019, 11(477): eaat7973. DOI: 10.1126/scitranslmed.aat7973.
    [18]
    WangX, ChungL, HooksJ, et al. Type 2 immunity induced by bladder extracellular matrix enhances corneal wound healing [J]. Sci Adv, 2021, 7(16): eabe2635. DOI: 10.1126/sciadv.abe2635.
    [19]
    GriffinDR,ArchangMM,KuanCH,et al.Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing[J].Nat Mater,2021,20(4):560-569.DOI: 10.1038/s41563-020-00844-w.
    [20]
    SadtlerK, SinghA, WolfM, et al. Design, clinical translation and immunological response of biomaterials in regenerative medicine [J]. Nat Rev Mater, 2016, 1(7): 16040. DOI: 10.1038/natrevmats.2016.40.
    [21]
    RinkevichY,WalmsleyGG,HuMS,et al.Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential[J].Science,2015,348(6232):aaa2151.DOI: 10.1126/science.aaa2151.
    [22]
    YannasIV,TzeranisDS,SoP.Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation[J].Wound Repair Regen,2017,25(2):177-191.DOI: 10.1111/wrr.12516.
    [23]
    GholipourmalekabadiM,KhosravimelalS,NokhbedehghanZ,et al.Modulation of hypertrophic scar formation using amniotic membrane/electrospun silk fibroin bilayer membrane in a rabbit ear model[J].ACS Biomater Sci Eng,2019,5(3):1487-1496.DOI: 10.1021/acsbiomaterials.8b01521.
    [24]
    GrasmanJM,WilliamsMD,RazisCG,et al.Hyperosmolar potassium inhibits myofibroblast conversion and reduces scar tissue formation[J].ACS Biomater Sci Eng,2019,5(10):5327-5336.DOI: 10.1021/acsbiomaterials.9b00810.
    [25]
    KalirajanC,PalanisamyT.A ZnO-curcumin nanocomposite embedded hybrid collagen scaffold for effective scarless skin regeneration in acute burn injury[J].J Mater Chem B,2019,7(38):5873-5886.DOI: 10.1039/c9tb01097a.
    [26]
    LiuX,MaL,LiangJ,et al.RNAi functionalized collagen-chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring[J].Biomaterials,2013,34(8):2038-2048.DOI: 10.1016/j.biomaterials.2012.11.062.
    [27]
    SuN,GaoPL,WangK,et al.Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material interaction[J].Biomaterials,2017,141:74-85.DOI: 10.1016/j.biomaterials.2017.06.028.
    [28]
    HanH,NingH,LiuS,et al.Silk biomaterials with vascularization capacity[J].Adv Funct Mater,2016,26(3):421-436.DOI: 10.1002/adfm.201504160.
    [29]
    XuY,PengJ,DongX,et al.Combined chemical and structural signals of biomaterials synergistically activate cell-cell communications for improving tissue regeneration[J].Acta Biomater,2017,55:249-261.DOI: 10.1016/j.actbio.2017.03.056.
    [30]
    LandryNM,DixonI.Fibroblast mechanosensing, SKI and Hippo signaling and the cardiac fibroblast phenotype: looking beyond TGF-β[J].Cell Signal,2020,76:109802.DOI: 10.1016/j.cellsig.2020.109802.
    [31]
    WangJH,ThampattyBP.An introductory review of cell mechanobiology[J].Biomech Model Mechanobiol,2006,5(1):1-16.DOI: 10.1007/s10237-005-0012-z.
    [32]
    AtchaH,JairamanA,HoltJR,et al.Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing[J].Nat Commun,2021,12(1):3256.DOI: 10.1038/s41467-021-23482-5.
    [33]
    LuuTU, LiuWF. Regulation of macrophages by extracellular matrix composition and adhesion geometry[J]. Regen Eng Transl Med, 2018, 4: 238-246. DOI: 10.1007/s40883-018-0065-z.
    [34]
    ChenK,KwonSH,HennD,et al.Disrupting biological sensors of force promotes tissue regeneration in large organisms[J].Nat Commun,2021,12(1):5256.DOI: 10.1038/s41467-021-25410-z.
    [35]
    YuJ,ZhangSS,SaitoK,et al.PTEN regulation by Akt-EGR1-ARF-PTEN axis[J].EMBO J,2009,28(1):21-33.DOI: 10.1038/emboj.2008.238.
    [36]
    ZhouF,HongY,LiangR,et al.Rapid printing of bio-inspired 3D tissue constructs for skin regeneration[J].Biomaterials,2020,258:120287.DOI: 10.1016/j.biomaterials.2020.120287.
    [37]
    KimBS,KwonYW,KongJS,et al.3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering[J].Biomaterials,2018,168:38-53.DOI: 10.1016/j.biomaterials.2018.03.040.
    [38]
    YaoB,WangR,WangY,et al.Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration[J].Sci Adv,2020,6(10):eaaz1094.DOI: 10.1126/sciadv.aaz1094.
    [39]
    MurrayRZ,WestZE,CowinAJ,et al.Development and use of biomaterials as wound healing therapies[J/OL].Burns Trauma,2019,7:2[2021-10-29].https://pubmed.ncbi.nlm.nih.gov/30701184/.DOI: 10.1186/s41038-018-0139-7.
    [40]
    GaharwarAK, SinghI, KhademhosseiniA. Engineered biomaterials for in situ tissue regeneration [J]. Nat Rev Mater, 2020, 5: 686-705. DOI: 10.1038/s41578-020-0209-x.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (639) PDF downloads(146) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return