Volume 38 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
Shan H,Zhang ZR,Wang XY,et al.Regulatory mechanism of deferoxamine on macrophage polarization and wound healing in mice with deep tissue injury[J].Chin J Burns Wounds,2022,38(8):767-777.DOI: 10.3760/cma.j.cn501225-20220114-00007.
Citation: Shan H,Zhang ZR,Wang XY,et al.Regulatory mechanism of deferoxamine on macrophage polarization and wound healing in mice with deep tissue injury[J].Chin J Burns Wounds,2022,38(8):767-777.DOI: 10.3760/cma.j.cn501225-20220114-00007.

Regulatory mechanism of deferoxamine on macrophage polarization and wound healing in mice with deep tissue injury

doi: 10.3760/cma.j.cn501225-20220114-00007
Funds:

Youth Science Foundation Project of National Natural Science Foundation of China 81701838

China Postdoctoral Science Foundation Project 2018M632628

More Information
  • Corresponding author: Zhang Ju, Email: zhangju111@qdu. edu. cn
  • Received Date: 2022-01-14
  •   Objective  To investigate the effects of deferoxamine on macrophage polarization and wound healing in mice with deep tissue injury (DTI) and its mechanism.  Methods  The experimental research methods were adopted. Fifty-four male C57BL/6J mice of 6-8 weeks old were divided into DTI control group, 2 mg/mL deferoxamine group, and 20 mg/mL deferoxamine group according to random number table, with 18 mice in each group. DTI was established on the back of mice by magnet compression method. From post injury day (PID) 1, mice were injected subcutaneously with 100 µL normal saline or the corresponding mass concentration of deferoxamine solution every other day at the wound edge until the samples were collected. Another 6 mice without any treatment were selected as normal control group. Six mice in each of the three DTI groups were collected on PID 3, 7, and 14 to observe the wound changes and calculate the wound healing rate. Normal skin tissue of mice in normal control group was collected on PID 3 in other groups (the same below) and wound tissue of mice in the other three groups on PID 7 and 14 was collected for hematoxylin-eosin (HE) staining to observe the tissue morphology. Normal skin tissue of mice in normal control group and wound tissue of mice in the other three groups on PID 7 were collected, and the percentages of CD206 and CD11c positive area were observed and measured by immunohistochemical staining, and the mRNA and protein expressions of CD206, CD11c, and inducible nitric oxide synthase (iNOS) were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. Normal skin tissue of mice in normal control group and wound tissue of mice in DTI control group and 20 mg/mL deferoxamine group were collected on PID 3, 7, and 14, and the protein expressions of signal transducer and activator of transcription 3 (STAT3) and interleukin-10 (IL-10) were detected by Western blotting. The sample number in each group at each time point in the above experiments. The RAW264.7 cells were divided into 50 μmol/L deferoxamine group, 100 μmol/L deferoxamine group, 200 μmol/L deferoxamine group, and blank control group, which were treated correspondingly, with 3 wells in each group. The positive cell percentages of CD206 and CD86 after 48 h of culture were detected by flow cytometry. Data were statistically analyzed with analysis of variance for repeated measurement, one-way analysis of variance, and least significant difference test.  Results  On PID 7, the wound healing rates of mice in 2 mg/mL and 20 mg/mL deferoamine groups were (17.7±3.7)% and (21.5±5.0)%, respectively, which were significantly higher than (5.1±2.3)% in DTI control group (P<0.01). On PID 14, the wound healing rates of mice in 2 mg/mL and 20 mg/mL deferoamine groups were (51.1±3.8)% and (57.4±4.4)%, respectively, which were significantly higher than (25.2±3.8)% in DTI control group (P<0.01). HE staining showed that the normal skin tissue layer of mice in normal control group was clear, the epidermis thickness was uniform, and skin appendages such as hair follicles and sweat glands were visible in the dermis. On PID 7, inflammation in wound tissue was obvious, the epidermis was incomplete, and blood vessels and skin appendages were rare in mice in DTI control group; inflammatory cells in wound tissue were reduced in mice in 2 mg/mL and 20 mg/mL deferoxamine groups, and a few of blood vessels and skin appendages could be seen. On PID 14, inflammation was significantly alleviated and blood vessels and skin appendages were increased in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoxamine groups compared with those in DTI control group. On PID 7, the percentages of CD206 positive area in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoxamine groups were significantly higher than that in DTI control group (P<0.01), the percentage of CD206 positive area in wound tissue of mice in DTI control group was significantly lower than that in normal skin tissue of mice in normal control group (P<0.01), the percentage of CD206 positive area in wound tissue of mice in 20 mg/mL deferoxamine group was significantly higher than that in normal skin tissue of mice in normal control group (P<0.01). The percentages of CD11c positive area in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoxamine groups were significantly lower than those in DTI control group and normal skin tissue in normal control group (P<0.05 or P<0.01), and the percentage of CD11c positive area in normal skin tissue of mice in normal control group was significantly higher than that in DTI control group (P<0.05). On PID 7, the CD206 mRNA expressions in the wound tissue of mice in 2 mg/mL and 20 mg/mL deferoxamine groups were significantly higher than that in DTI control group (P<0.01), but significantly lower than that in normal skin tissue in normal control group (P<0.01); the CD206 mRNA expression in wound tissue of mice in DTI control group was significantly lower than that in normal skin tissue in normal control group (P<0.01). The mRNA expressions of CD11c and iNOS in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly lower than those in DTI control group (P<0.01). The mRNA expressions of CD11c in the wound tissue of mice in DTI control group, 2 mg/mL and 20 mg/mL deferoamine groups were significantly higher than that in normal skin tissue in normal control group (P<0.01). Compared with that in normal skin tissue in normal control group, the mRNA expressions of iNOS in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly decreased (P<0.01), and the mRNA expression of iNOS in wound tissue of mice in DTI control group was significantly increased (P<0.01). On PID 7, the protein expressions of CD206 in the wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly higher than those in DTI control group and normal skin tissue in normal control group (P<0.01), and the protein expression of CD206 in wound tissue of mice in DTI control group was significantly lower than that in normal skin tissue in normal control group (P<0.01). The protein expressions of CD11c and iNOS in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly lower than those in DTI control group (P<0.01). The protein expressions of CD11c and iNOS in wound tissue of mice in DTI control group were significantly higher than those in normal skin tissue in normal control group (P<0.01). The CD11c protein expressions in wound tissue of mice in 2 mg/mL and 20 mg/mL deferoamine groups were significantly higher than those in normal skin tissue in normal control group (P<0.05 or P<0.01). The protein expression of iNOS in wound tissue of mice in 2 mg/mL deferoamine group was significantly lower than that in 20 mg/mL deferoamine group and normal skin tissue in normal control group (P<0.05). On PID 3, 7, and 14, the protein expressions of STAT3 and IL-10 in wound tissue of mice in 20 mg/mL deferoxamine group were significantly higher than those in DTI control group (P<0.05 or P<0.01), and the protein expressions of STAT3 were significantly higher than those in normal skin tissue in normal control group (P<0.05 or P<0.01). On PID 7 and 14, the protein expressions of IL-10 in wound tissue of mice in 20 mg/mL deferoxamine group were significantly higher than those in normal skin tissue in normal control group (P<0.01). On PID 3, 7, and 14, the protein expressions of IL-10 in wound tissue of mice in DTI control group were significantly lower than those in normal skin tissue in normal control group (P<0.05 or P<0.01). After 48 h of culture, compared with those in blank control group, the CD206 positive cell percentages in 100 μmol/L and 200 μmol/L deferoamine groups were significantly increased (P<0.01), while the CD86 positive cell percentages in 100 μmol/L and 200 μmol/L deferoamine groups were significantly decreased (P<0.01).  Conclusions  Deferoxamine can promote the polarization of macrophages toward the anti-inflammatory M2 phenotype and improve wound healing by enhancing the STAT3/IL-10 signaling pathway in DTI mice.

     

  • loading
  • [1]
    SenCK. Human wound and its burden: updated 2020 compendium of estimates[J]. Adv Wound Care (New Rochelle), 2021, 10(5):281-292. DOI: 10.1089/wound.2021.0026.
    [2]
    FuX. Wound healing center establishment and new technology application in improving the wound healing quality in China[J/OL]. Burns Trauma, 2020, 8: tkaa038[2022-06-06]. https://pubmed.ncbi.nlm.nih.gov/33134399/. DOI: 10.1093/burnst/tkaa038.
    [3]
    WynnM. Deep tissue injury: a narrative review on the aetiology of a controversial wound[J]. Br J Nurs, 2021, 30(5):S32-37. DOI: 10.12968/bjon.2021.30.5.S32.
    [4]
    ShiH, XieH, ZhaoY, et al. Myoprotective effects of bFGF on skeletal muscle injury in pressure-related deep tissue injury in rats[J/OL]. Burns Trauma, 2016, 4: 26[2022-06-06]. https://pubmed.ncbi.nlm.nih.gov/27574694/.DOI: 10.1186/s41038-016-0051-y.
    [5]
    陆树良.把握创面修复的规律和特征促进创面愈合[J].中华烧伤杂志, 2021, 37(5):401-403. DOI: 10.3760/cma.j.cn501120-20210322-00100.
    [6]
    WangP, CuiY, RenQ, et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis[J]. Cell Death Dis, 2021,12(5):447. DOI: 10.1038/s41419-021-03725-5.
    [7]
    KangH, HanM, XueJ, et al. Renal clearable nanochelators for iron overload therapy[J]. Nat Commun, 2019, 10(1):5134. DOI: 10.1038/s41467-019-13143-z.
    [8]
    WuS, YangJ, SunG, et al. Macrophage extracellular traps aggravate iron overload-related liver ischaemia/reperfusion injury[J]. Br J Pharmacol, 2021, 178(18):3783-3796. DOI: 10.1111/bph.15518.
    [9]
    张子锐, 张亚萍, 郭景琳,等.去铁胺通过抑制氧化应激反应促进小鼠深部组织压力性损伤创面愈合[J].中国病理生理杂志, 2021, 37(9):1646-1654. DOI: 10.3969/j.issn.1000-4718.2021.09.014.
    [10]
    SindrilaruA, PetersT, WieschalkaS, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice[J]. J Clin Invest, 2011, 121(3):985-997. DOI: 10.1172/JCI44490.
    [11]
    HoldenP, NairLS. Deferoxamine: an angiogenic and antioxidant molecule for tissue regeneration[J]. Tissue Eng Part B Rev, 2019, 25(6):461-470. DOI: 10.1089/ten.TEB.2019.0111.
    [12]
    DingJ, WangX, ChenB, et al. Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis[J]. Biomed Res Int, 2019, 2019:9742765. DOI: 10.1155/2019/9742765.
    [13]
    DuscherD, TrotsyukAA, MaanZN, et al. Optimization of transdermal deferoxamine leads to enhanced efficacy in healing skin wounds[J]. J Control Release, 2019, 308:232-239. DOI: 10.1016/j.jconrel.2019.07.009.
    [14]
    WinnNC, VolkKM, HastyAH. Regulation of tissue iron homeostasis: the macrophage "ferrostat"[J]. JCI Insight, 2020, 5(2):e132964. DOI: 10.1172/jci.insight.132964.
    [15]
    LiuP, YangX, HanJ, et al. Tazarotene-loaded PLGA nanoparticles potentiate deep tissue pressure injury healing via VEGF-Notch signaling[J]. Mater Sci Eng C Mater Biol Appl, 2020, 114:111027. DOI: 10.1016/j.msec.2020.111027.
    [16]
    YangX,GuoJL,HanJ,et al.Chitosan hydrogel encapsulated with LL-37 peptide promotes deep tissue injury healing in a mouse model[J].Mil Med Res,2020,7(1):20.DOI: 10.1186/s40779-020-00249-5.
    [17]
    SariY,MinematsuT,HuangL,et al.Establishment of a novel rat model for deep tissue injury deterioration[J].Int Wound J,2015,12(2):202-209.DOI: 10.1111/iwj.12082.
    [18]
    RavingerováT, KindernayL, BartekováM, et al. The molecular mechanisms of iron metabolism and its role in cardiac dysfunction and cardioprotection[J]. Int J Mol Sci, 2020, 21(21):7889. DOI: 10.3390/ijms21217889.
    [19]
    YanHF, TuoQZ, YinQZ, et al. The pathological role of ferroptosis in ischemia/reperfusion-related injury[J]. Zool Res, 2020, 41(3):220-230. DOI: 10.24272/j.issn.2095-8137.2020.042.
    [20]
    WilkinsonHN, UpsonSE, BanyardKL, et al. Reduced iron in diabetic wounds: an oxidative stress-dependent role for STEAP3 in extracellular matrix deposition and remodeling[J]. J Invest Dermatol, 2019,139(11):2368-2377.e7. DOI: 10.1016/j.jid.2019.05.014.
    [21]
    WangC, CaiY, ZhangY, et al. Local injection of deferoxamine improves neovascularization in ischemic diabetic random flap by increasing HIF-1α and VEGF expression[J]. PLoS One, 2014, 9(6):e100818. DOI: 10.1371/journal.pone.0100818.
    [22]
    Tchanque-FossuoCN, DahleSE, BuchmanSR, et al. Deferoxamine: potential novel topical therapeutic for chronic wounds[J]. Br J Dermatol, 2017, 176(4):1056-1059. DOI: 10.1111/bjd.14956.
    [23]
    BonhamCA, RodriguesM, GalvezM, et al. Deferoxamine can prevent pressure ulcers and accelerate healing in aged mice[J]. Wound Repair Regen, 2018, 26(3):300-305. DOI: 10.1111/wrr.12667.
    [24]
    RamM, SinghV, KumawatS, et al. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats[J]. Eur J Pharmacol, 2015, 764:9-21. DOI: 10.1016/j.ejphar.2015.06.029.
    [25]
    RenH, ZhaoF, ZhangQ, et al. Autophagy and skin wound healing[J/OL]. Burns Trauma, 2022, 10: tkac003[2022-06-06].https://pubmed.ncbi.nlm.nih.gov/35187180/. DOI: 10.1093/burnst/tkac003.
    [26]
    HuP, YangQ, WangQ, et al. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration[J/OL]. Burns Trauma, 2019, 7: 38[2022-06-06]. https://pubmed.ncbi.nlm.nih.gov/31890717/.DOI: 10.1186/s41038-019-0178-8.
    [27]
    CaputaG, FlachsmannLJ, CameronAM. Macrophage metabolism: a wound-healing perspective[J]. Immunol Cell Biol, 2019, 97(3):268-278. DOI: 10.1111/imcb.12237.
    [28]
    Shapouri-MoghaddamA, MohammadianS, VaziniH, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9):6425-6440. DOI: 10.1002/jcp.26429.
    [29]
    WangS, LiuC, PanS, et al. Deferoxamine attenuates lipopolysaccharide-induced inflammatory responses and protects against endotoxic shock in mice[J]. Biochem Biophys Res Commun, 2015,465(2):305-311. DOI: 10.1016/j.bbrc.2015.08.032.
    [30]
    YangF, WuZ, YangD, et al. Characteristics of macrophages from myelodysplastic syndrome microenvironment[J]. Exp Cell Res, 2021, 408(1):112837. DOI: 10.1016/j.yexcr.2021.112837.
    [31]
    HamidzadehK, ChristensenSM, DalbyE, et al. Macrophages and the recovery from acute and chronic inflammation[J]. Annu Rev Physiol, 2017, 79:567-592. DOI: 10.1146/annurev-physiol-022516-034348.
    [32]
    YangC, HeL, HeP, et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway[J]. Med Oncol, 2015, 32(2):352. DOI: 10.1007/s12032-014-0352-6.
    [33]
    TangL, ZhangH, WangC, et al. M2A and M2C macrophage subsets ameliorate inflammation and fibroproliferation in acute lung injury through interleukin 10 pathway[J]. Shock, 2017, 48 (1):119-129. DOI: 10.1097/SHK.0000000000000820.
    [34]
    KuangY, GuoW, LingJ, et al. Iron-dependent CDK1 activity promotes lung carcinogenesis via activation of the GP130/STAT3 signaling pathway[J]. Cell Death Dis, 2019, 10(4):297. DOI: 10.1038/s41419-019-1528-y.
    [35]
    ZhangZ, ZhangJ, HeP, et al. Interleukin-37 suppresses hepatocellular carcinoma growth through inhibiting M2 polarization of tumor-associated macrophages[J]. Mol Immunol,2020,122:13-20. DOI: 10.1016/j.molimm.2020.03.012.
    [36]
    ParkSM, AnJH, LeeJH, et al. Extracellular vesicles derived from DFO-preconditioned canine AT-MSCs reprogram macrophages into M2 phase[J]. PLoS One, 2021, 16(7):e0254657. DOI: 10.1371/journal.pone.0254657.
    [37]
    ZhouD, HuangC, LinZ, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways[J]. Cell Signal, 2014, 26 (2):192-197. DOI: 10.1016/j.cellsig.2013.11.004.
    [38]
    WuWK, LlewellynOP, BatesDO, et al. IL-10 regulation of macrophage VEGF production is dependent on macrophage polarisation and hypoxia[J]. Immunobiology, 2010, 215(9/10):796-803. DOI: 10.1016/j.imbio.2010.05.025.
    [39]
    白海良, 段红杰, 陈晨, 等. Janus激酶/信号转导及转录激活子3通路抑制剂对严重烧伤大鼠骨骼肌功能的影响及其机制[J]. 中华烧伤杂志, 2021, 37(3): 271-278. DOI: 10.3760/cma.j.cn501120-20200120-00030.
    [40]
    ZhuJ, LuoL, TianL, et al. Aryl hydrocarbon receptor promotes IL-10 expression in inflammatory macrophages through Src-STAT3 signaling pathway[J]. Front Immunol, 2018, 9: 2033. DOI: 10.3389/fimmu.2018.02033.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (1276) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return