Citation: | Yang Y,Li L,Yang ZJ,et al.Effects of low-dose photodynamic therapy on the function of human adipose mesenchymal stem cells and its mechanism[J].Chin J Burns Wounds,2022,38(9):830-838.DOI: 10.3760/cma.j.cn501225-20220325-00092. |
[1] |
CastanoAP, DemidovaTN, HamblinMR. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization[J]. Photodiagnosis Photodyn Ther,2004,1(4):279-293.DOI: 10.1016/S1572-1000(05)00007-4.
|
[2] |
GunaydinG, GedikME, AyanS. Photodynamic therapy for the treatment and diagnosis of cancer-a review of the current clinical status[J]. Front Chem,2021,9:686303.DOI: 10.3389/fchem.2021.686303.
|
[3] |
KimM, JungHY, ParkHJ. Topical PDT in the treatment of benign skin diseases: principles and new applications[J]. Int J Mol Sci,2015,16(10):23259-23278.DOI: 10.3390/ijms161023259.
|
[4] |
PlaetzerK, KrammerB, BerlandaJ, et al. Photophysics and photochemistry of photodynamic therapy: fundamental aspects[J]. Lasers Med Sci,2009,24(2):259-268.DOI: 10.1007/s10103-008-0539-1.
|
[5] |
HuCX, ZhaoLF, PengCG, et al. Regulation of the mitochondrial reactive oxygen species: strategies to control mesenchymal stem cell fates ex vivo and in vivo[J]. J Cell Mol Med,2018,22(11):5196-5207.DOI: 10.1111/jcmm.13835.
|
[6] |
YangZJ, HuXH, ZhouLN, et al. Photodynamic therapy accelerates skin wound healing through promoting re-epithelialization[J/OL]. Burns Trauma,2021,9:tkab008[2022-03-25]. https://pubmed.ncbi.nlm.nih.gov/34514005/.DOI: 10.1093/burnst/tkab008.
|
[7] |
KaushikK, DasA. Endothelial progenitor cell therapy for chronic wound tissue regeneration[J]. Cytotherapy,2019,21(11):1137-1150.DOI: 10.1016/j.jcyt.2019.09.002.
|
[8] |
De LucaM, AiutiA, CossuG, et al. Advances in stem cell research and therapeutic development[J]. Nat Cell Biol,2019,21(7):801-811.DOI: 10.1038/s41556-019-0344-z.
|
[9] |
JoH, BritoS, KwakBM, et al. Applications of mesenchymal stem cells in skin regeneration and rejuvenation[J]. Int J Mol Sci,2021,22(5):2410.DOI: 10.3390/ijms22052410.
|
[10] |
DasM, MayilsamyK, MohapatraSS, et al. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects[J]. Rev Neurosci,2019,30(8):839-855.DOI: 10.1515/revneuro-2019-0002.
|
[11] |
DolatiS, YousefiM, MahdipourM, et al. Mesenchymal stem cell and bone marrow mononuclear cell therapy for cardiomyopathy: from bench to bedside[J]. J Cell Biochem,2019,120(1):45-55.DOI: 10.1002/jcb.27531.
|
[12] |
HaDH, KimHK, LeeJ, et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration[J]. Cells,2020,9(5):1157.DOI: 10.3390/cells9051157.
|
[13] |
ShuklaL, YuanYN, ShayanR, et al. Fat therapeutics: the clinical capacity of adipose-derived stem cells and exosomes for human disease and tissue regeneration[J]. Front Pharmacol,2020,11:158.DOI: 10.3389/fphar.2020.00158.
|
[14] |
NaderiN, CombellackEJ, GriffinM, et al. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery[J]. Int Wound J,2017,14(1):112-124.DOI: 10.1111/iwj.12569.
|
[15] |
WernerS, GroseR. Regulation of wound healing by growth factors and cytokines[J]. Physiol Rev,2003,83(3):835-870.DOI: 10.1152/physrev.2003.83.3.835.
|
[16] |
FalangaV. Growth factors and chronic wounds: the need to understand the microenvironment[J]. J Dermatol,1992,19(11):667-672.DOI: 10.1111/j.1346-8138.1992.tb03756.x.
|
[17] |
ShuFT, GaoHJ, WuWF, et al. Amniotic epithelial cells accelerate diabetic wound healing by protecting keratinocytes and fibroblasts from high-glucose-induced senescence[J]. Cell Biol Int,2022,46(5):755-770.DOI: 10.1002/cbin.11771.
|
[18] |
BerberichB, ThrieneK, GretzmeierC, et al. Proteomic profiling of fibroblasts isolated from chronic wounds identifies disease-relevant signaling pathways[J]. J Invest Dermatol,2020,140(11):2280-2290.e4.DOI: 10.1016/j.jid.2020.02.040.
|
[19] |
HardingKG, MooreK, PhillipsTJ. Wound chronicity and fibroblast senescence--implications for treatment[J]. Int Wound J,2005,2(4):364-368.DOI: 10.1111/j.1742-4801.2005.00149.x.
|
[20] |
DongWP, SongZC, LiuSH, et al. Adipose-derived stem cells based on electrospun biomimetic scaffold mediated endothelial differentiation facilitating regeneration and repair of abdominal wall defects via HIF-1α/VEGF pathway[J]. Front Bioeng Biotechnol,2021,9:676409.DOI: 10.3389/fbioe.2021.676409.
|
[21] |
LeeCH, ShahB, MoioliEK, et al. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model[J]. J Clin Invest,2010,120(9):3340-3349.DOI: 10.1172/JCI43230.
|
[22] |
Chavez-MunozC, NguyenKT, XuW, et al. Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis[J]. PLoS One,2013,8(12):e80587.DOI: 10.1371/journal.pone.0080587.
|
[23] |
JiangDS, Scharffetter-KochanekK. Mesenchymal stem cells adaptively respond to environmental cues thereby improving granulation tissue formation and wound healing[J]. Front Cell Dev Biol,2020,8:697.DOI: 10.3389/fcell.2020.00697.
|
[24] |
HuangYZ, GouM, DaLC, et al. Mesenchymal stem cells for chronic wound healing: current status of preclinical and clinical studies[J]. Tissue Eng Part B Rev,2020,26(6):555-570.DOI: 10.1089/ten.TEB.2019.0351.
|
[25] |
MaxsonS, LopezEA, YooD, et al. Concise review: role of mesenchymal stem cells in wound repair[J]. Stem Cells Transl Med,2012,1(2):142-149.DOI: 10.5966/sctm.2011-0018.
|
[26] |
FuXR, LiuG, HalimA, et al. Mesenchymal stem cell migration and tissue repair[J]. Cells,2019,8(8):784.DOI: 10.3390/cells8080784.
|
[27] |
RaposioE, BertozziN. Isolation of ready-to-use adipose-derived stem cell (ASC) pellet for clinical applications and a comparative overview of alternate methods for ASC isolation[J]. Curr Protoc Stem Cell Biol,2017,41:1F.17.1-1F.17.12.DOI: 10.1002/cpsc.29.
|
[28] |
BacakovaL, ZarubovaJ, TravnickovaM, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review[J]. Biotechnol Adv,2018,36(4):1111-1126.DOI: 10.1016/j.biotechadv.2018.03.011.
|
[29] |
SiZZ, WangX, SunCH, et al. Adipose-derived stem cells: sources, potency, and implications for regenerative therapies[J]. Biomed Pharmacother,2019,114:108765.DOI: 10.1016/j.biopha.2019.108765.
|
[30] |
Díaz-GarcíaD, FilipováA, Garza-VelozI, et al. A beginner's introduction to skin stem cells and wound healing[J]. Int J Mol Sci,2021,22(20):11030.DOI: 10.3390/ijms222011030.
|
[31] |
RodriguesM, KosaricN, BonhamCA, et al. Wound healing: a cellular perspective[J]. Physiol Rev,2019,99(1):665-706.DOI: 10.1152/physrev.00067.2017.
|
[32] |
MoritaM, GravelSP, HuleaL, et al. mTOR coordinates protein synthesis, mitochondrial activity and proliferation[J]. Cell Cycle,2015,14(4):473-480.DOI: 10.4161/15384101.2014.991572.
|
[33] |
CarrascoE, CalvoMI, Blzquez-CastroA, et al. Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing[J]. J Invest Dermatol,2015,135(11):2611-2622.DOI: 10.1038/jid.2015.248.
|
[34] |
Al-AzabM, WangB, ElkhiderA, et al. Indian hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway[J]. Aging (Albany NY),2020,12(7):5693-5715.DOI: 10.18632/aging.102958.
|
[35] |
GuoW, QiuW, AoX, et al. Low-concentration DMSO accelerates skin wound healing by Akt/mTOR-mediated cell proliferation and migration in diabetic mice[J]. Br J Pharmacol,2020,177(14):3327-3341.DOI: 10.1111/bph.15052.
|