Volume 38 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
Weng TT,Cai CH,Han CM,et al.Research advances on biomaterials for the delivery of growth factors to regulate wound repair[J].Chin J Burns Wounds,2022,38(7):691-696.DOI: 10.3760/cma.j.cn501225-20220430-00166.
Citation: Weng TT,Cai CH,Han CM,et al.Research advances on biomaterials for the delivery of growth factors to regulate wound repair[J].Chin J Burns Wounds,2022,38(7):691-696.DOI: 10.3760/cma.j.cn501225-20220430-00166.

Research advances on biomaterials for the delivery of growth factors to regulate wound repair

doi: 10.3760/cma.j.cn501225-20220430-00166
Funds:

National Key Research and Development Program of China 2016YFC1100803

General Program of National Natural Science Foundation of China 81772069

Wang Zhengguo Foundation for Traumatic Medicine Growth Factor Rejuvenation Plan SZYZ-TR-12

More Information
  • Wound repair is a highly coordinated and mutually regulated complex process involving various kinds of cells, extracellular matrices and cytokines. A variety of growth factors play an important regulatory role in wound healing, and it is critical to achieve effective delivery and sustained function of growth factors. In recent years, the application of biomaterials in tissue engineering has shown great potential, and the effective delivery of growth factors by biomaterials has attracted increasing attention. Based on this, this paper introduces the mechanism of related growth factors in the process of wound healing, focusing on the recent progress of biomaterial delivery of growth factors to accelerate wound healing, in order to provide new enlightenment for clinical wound treatment.

     

  • loading
  • [1]
    韩春茂, 余美荣, 王新刚. 创面处理主要进展概述[J]. 中华烧伤杂志, 2018,34(12):864-867.DOI: 10.3760/cma.j.issn.1009-2587.2018.12.009.
    [2]
    NiuY, LiQ, DingY, et al. Engineered delivery strategies for enhanced control of growth factor activities in wound healing[J]. Adv Drug Deliv Rev, 2019,146:190-208.DOI: 10.1016/j.addr.2018.06.002.
    [3]
    TakeoM, LeeW, ItoM. Wound healing and skin regeneration[J]. Cold Spring Harb Perspect Med, 2015,5(1):a23267.DOI: 10.1101/cshperspect.a023267.
    [4]
    ZubairM, AhmadJ. Role of growth factors and cytokines in diabetic foot ulcer healing: a detailed review[J]. Rev Endocr Metab Disord, 2019,20(2):207-217.DOI: 10.1007/s11154-019-09492-1.
    [5]
    XiongS, ZhangX, LuP, et al. A Gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization[J]. Sci Rep, 2017,7(1):4288.DOI: 10.1038/s41598-017-04149-y.
    [6]
    FuX, ShenZ, ChenY, et al. Randomised placebo-controlled trial of use of topical recombinant bovine basic fibroblast growth factor for second-degree burns[J]. Lancet, 1998,352(9141):1661-1664.DOI: 10.1016/S0140-6736(98)01260-4.
    [7]
    JohnsonKE, WilgusTA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair[J]. Adv Wound Care (New Rochelle), 2014,3(10):647-661.DOI: 10.1089/wound.2013.0517.
    [8]
    ShenS, WangF, FernandezA, et al. Role of platelet-derived growth factor in type Ⅱ diabetes mellitus and its complications[J]. Diab Vasc Dis Res, 2020,17(7):1479164120942119.DOI: 10.1177/1479164120942119.
    [9]
    LichtmanMK, Otero-VinasM, FalangaV. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis[J]. Wound Repair Regen, 2016,24(2):215-222.DOI: 10.1111/wrr.12398.
    [10]
    KhanI, RahmanS U, TangE, et al. Accelerated burn wound healing with photobiomodulation therapy involves activation of endogenous latent TGF-β1[J]. Sci Rep, 2021,11(1):13371.DOI: 10.1038/s41598-021-92650-w.
    [11]
    HimpeE, KooijmanR. Insulin-like growth factor-I receptor signal transduction and the Janus Kinase/Signal Transducer and Activator of Transcription (JAK-STAT) pathway[J]. Biofactors, 2009,35(1):76-81.DOI: 10.1002/biof.20.
    [12]
    DasS, SinghG, MajidM, et al. Syndesome therapeutics for enhancing diabetic wound healing[J]. Adv Healthc Mater, 2016,5(17):2248-2260.DOI: 10.1002/adhm.201600285.
    [13]
    IsnerJM, PieczekA, SchainfeldR, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb[J]. Lancet, 1996,348(9024):370-374.DOI: 10.1016/s0140-6736(96)03361-2.
    [14]
    SteedDL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group[J]. J Vasc Surg, 1995,21(1):71-78;discussion 79-81.DOI: 10.1016/s0741-5214(95)70245-8.
    [15]
    石宗义. 转化生长因子β1促进关节软骨缺损修复的临床应用[J]. 中国现代医药杂志, 2006,8(7):37-39. DOI: 10.3969/j.issn.1672-9463.2006.07.016.
    [16]
    EmmersonE, CampbellL, DaviesF C, et al. Insulin-like growth factor-1 promotes wound healing in estrogen-deprived mice: new insights into cutaneous IGF-1R/ERα cross talk[J]. J Invest Dermatol, 2012,132(12):2838-2848.DOI: 10.1038/jid.2012.228.
    [17]
    BerthetM, GauthierY, LacroixC, et al. Nanoparticle-based dressing: the future of wound treatment?: (Trends in Biotechnology 35, 770-784, 2017)[J]. Trends Biotechnol, 2018,36(1):119.DOI: 10.1016/j.tibtech.2017.08.007.
    [18]
    DesmetCM, PréatV, GallezB. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing[J]. Adv Drug Deliv Rev, 2018,129:262-284.DOI: 10.1016/j.addr.2018.02.001.
    [19]
    ReckhenrichAK, HopfnerU, KrötzF, et al. Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector[J]. Biomaterials, 2011,32(7):1996-2003.DOI: 10.1016/j.biomaterials.2010.11.022.
    [20]
    McKnightCD, WinnSR, GongX, et al. Revascularization of rat fasciocutaneous flap using CROSSEAL with VEGF protein or plasmid DNA expressing VEGF[J]. Otolaryngol Head Neck Surg, 2008,139(2):245-249.DOI: 10.1016/j.otohns.2008.04.014.
    [21]
    JeschkeMG, KleinD. Liposomal gene transfer of multiple genes is more effective than gene transfer of a single gene[J]. Gene Ther, 2004,11(10):847-855.DOI: 10.1038/sj.gt.3302229.
    [22]
    ChereddyKK, LopesA, KoussoroplisS, et al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds[J]. Nanomedicine, 2015,11(8):1975-1984.DOI: 10.1016/j.nano.2015.07.006.
    [23]
    GuoR, XuS, MaL, et al. The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents[J]. Biomaterials, 2011,32(4):1019-1031.DOI: 10.1016/j.biomaterials.2010.08.087.
    [24]
    O'DwyerJ, CullenM, FattahS, et al. Development of a sustained release nano-in-gel delivery system for the chemotactic and angiogenic growth factor stromal-derived factor 1α[J]. Pharmaceutics, 2020,12(6):513.DOI: 10.3390/pharmaceutics12060513.
    [25]
    ImGB, KimYH, KimYJ, et al. Enhancing the wound healing effect of conditioned medium collected from mesenchymal stem cells with high passage number using bioreducible nanoparticles[J]. Int J Mol Sci, 2019,20(19).DOI: 10.3390/ijms20194835.
    [26]
    LaiHJ, KuanCH, WuHC, et al. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing[J]. Acta Biomater, 2014,10(10):4156-4166.DOI: 10.1016/j.actbio.2014.05.001.
    [27]
    MariiaK, ArifM, ShiJ, et al. Novel chitosan-ulvan hydrogel reinforcement by cellulose nanocrystals with epidermal growth factor for enhanced wound healing: In vitro and in vivo analysis[J]. Int J Biol Macromol, 2021,183:435-446.DOI: 10.1016/j.ijbiomac.2021.04.156.
    [28]
    LeeYH, HongYL, WuTL. Novel silver and nanoparticle- encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing[J]. Mater Sci Eng C Mater Biol Appl, 2021,118:111385.DOI: 10.1016/j.msec.2020.111385.
    [29]
    HajimiriM, ShahverdiS, EsfandiariMA, et al. Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing[J]. Drug Dev Ind Pharm, 2016,42(5):707-719.DOI: 10.3109/03639045.2015.1075030.
    [30]
    XiaG, LiuY, TianM, et al. Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds[J]. J Mater Chem B, 2017,5(17):3172-3185.DOI: 10.1039/c7tb00479f.
    [31]
    LosiP, BrigantiE, ErricoC, et al. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice[J]. Acta Biomater, 2013,9(8):7814-7821.DOI: 10.1016/j.actbio.2013.04.019.
    [32]
    TokatlianT, CamC, SeguraT. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model[J]. Adv Healthc Mater, 2015,4(7):1084-1091.DOI: 10.1002/adhm.201400783.
    [33]
    TanhaS, Rafiee-TehraniM, AbdollahiM, et al. G-CSF loaded nanofiber/nanoparticle composite coated with collagen promotes wound healing in vivo[J]. J Biomed Mater Res A, 2017,105(10):2830-2842.DOI: 10.1002/jbm.a.36135.
    [34]
    ZhuK, WuM, LaiH, et al. Nanoparticle-enhanced generation of gene-transfected mesenchymal stem cells for in vivo cardiac repair[J]. Biomaterials, 2016,74:188-199.DOI: 10.1016/j.biomaterials.2015.10.010.
    [35]
    LiM, QiuL, HuW, et al. Genetically-modified bone mesenchymal stem cells with TGF-β3 improve wound healing and reduce scar tissue formation in a rabbit model[J]. Exp Cell Res, 2018,367(1):24-29.DOI: 10.1016/j.yexcr.2018.02.006.
    [36]
    LiS, TangQ, XuH, et al. Improved stability of KGF by conjugation with gold nanoparticles for diabetic wound therapy[J]. Nanomedicine (Lond), 2019,14(22):2909-2923.DOI: 10.2217/nnm-2018-0487.
    [37]
    PanA, ZhongM, WuH, et al. Topical application of keratinocyte growth factor conjugated gold nanoparticles accelerate wound healing[J]. Nanomedicine, 2018,14(5):1619-1628.DOI: 10.1016/j.nano.2018.04.007.
    [38]
    LeeYH, LinSJ. Chitosan/PVA hetero-composite hydrogel containing antimicrobials, perfluorocarbon nanoemulsions, and growth factor-loaded nanoparticles as a multifunctional dressing for diabetic wound healing: synthesis, characterization, and in vitro/in vivo evaluation[J]. Pharmaceutics, 2022,14(3).DOI: 10.3390/pharmaceutics14030537.
    [39]
    XieZ, ParasCB, WengH, et al. Dual growth factor releasing multi-functional nanofibers for wound healing[J]. Acta Biomater, 2013,9(12):9351-9359.DOI: 10.1016/j.actbio.2013.07.030.
    [40]
    ChengB, JiangY, FuX, et al. Epidemiological characteristics and clinical analyses of chronic cutaneous wounds of inpatients in China: prevention and control[J]. Wound Repair Regen, 2020,28(5):623-630.DOI: 10.1111/wrr.12825.
    [41]
    YangY, XiaT, ChenF, et al. Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats[J]. Mol Pharm, 2012,9(1):48-58.DOI: 10.1021/mp200246b.
    [42]
    VeithA P, HendersonK, SpencerA, et al. Therapeutic strategies for enhancing angiogenesis in wound healing[J]. Adv Drug Deliv Rev, 2019,146:97-125.DOI: 10.1016/j.addr.2018.09.010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (1631) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return