Citation: | Fang SYH,Liu DW.Research advances on the role of cell senescence in chronic wound healing[J].Chin J Burns Wounds,2023,39(8):795-800.DOI: 10.3760/cma.j.cn501225-20220928-00424. |
[1] |
ChengB,JiangYF,FuXB,et al.Epidemiological characteristics and clinical analyses of chronic cutaneous wounds of inpatients in China: prevention and control[J].Wound Repair Regen,2020,28(5):623-630.DOI: 10.1111/wrr.12825.
|
[2] |
WangHL,WangZW,HuangY,et al.Senolytics (DQ) mitigates radiation ulcers by removing senescent cells[J].Front Oncol,2019,9:1576.DOI: 10.3389/fonc.2019.01576.
|
[3] |
WangZW,ChenZL,JiangZY,et al.Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents[J].Nat Commun,2019,10(1):2538.DOI: 10.1038/s41467-019-10386-8.
|
[4] |
DemariaM,OhtaniN,YoussefSA,et al.An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA[J].Dev Cell,2014,31(6):722-733.DOI: 10.1016/j.devcel.2014.11.012.
|
[5] |
WeiXR,LiMX,ZhengZJ,et al.Senescence in chronic wounds and potential targeted therapies[J/OL].Burns Trauma,2022,10:tkab045[2022-09-28]. https://pubmed.ncbi.nlm.nih.gov/35187179/.DOI: 10.1093/burnst/tkab045.
|
[6] |
Muñoz-EspínD,SerranoM.Cellular senescence: from physiology to pathology[J].Nat Rev Mol Cell Biol,2014,15(7):482-496.DOI: 10.1038/nrm3823.
|
[7] |
WilkinsonHN,HardmanMJ.Senescence in wound repair: emerging strategies to target chronic healing wounds[J].Front Cell Dev Biol,2020,8:773.DOI: 10.3389/fcell.2020.00773.
|
[8] |
Di MiccoR,KrizhanovskyV,BakerD,et al.Cellular senescence in ageing: from mechanisms to therapeutic opportunities[J].Nat Rev Mol Cell Biol,2021,22(2):75-95.DOI: 10.1038/s41580-020-00314-w.
|
[9] |
RitschkaB,StorerM,MasA,et al.The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration[J].Genes Dev,2017,31(2):172-183.DOI: 10.1101/gad.290635.116.
|
[10] |
ChildsBG,BakerDJ,KirklandJL,et al.Senescence and apoptosis: dueling or complementary cell fates?[J].EMBO Rep,2014,15(11):1139-1153.DOI: 10.15252/embr.201439245.
|
[11] |
JenkinsNC,LiuT,CassidyP,et al.The p16(INK4A) tumor suppressor regulates cellular oxidative stress[J].Oncogene,2011,30(3):265-274.DOI: 10.1038/onc.2010.419.
|
[12] |
OrjaloAV,BhaumikD,GenglerBK,et al.Cell surface-bound IL-1α is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network[J].Proc Natl Acad Sci U S A,2009,106(40):17031-17036.DOI: 10.1073/pnas.0905299106.
|
[13] |
WangZW,ShiCM.Cellular senescence is a promising target for chronic wounds: a comprehensive review[J/OL].Burns Trauma,2020,8:tkaa021[2022-09-28]. https://pubmed.ncbi.nlm.nih.gov/32607375/.DOI: 10.1093/burnst/tkaa021.
|
[14] |
AdamusJ,AhoS,MeldrumH,et al.p16INK4A influences the aging phenotype in the living skin equivalent[J].J Invest Dermatol,2014,134(4):1131-1133.DOI: 10.1038/jid.2013.468.
|
[15] |
FangM,WangJH,LiSL,et al.Advanced glycation end-products accelerate the cardiac aging process through the receptor for advanced glycation end-products/transforming growth factor-β-Smad signaling pathway in cardiac fibroblasts[J].Geriatr Gerontol Int,2016,16(4):522-527.DOI: 10.1111/ggi.12499.
|
[16] |
MullerM,LiZ,MaitzPK.Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: role for p38 mitogen-activated protein kinase[J].Burns,2009,35(4):500-508.DOI: 10.1016/j.burns.2008.11.010.
|
[17] |
HasanA,MurataH,FalabellaA,et al.Dermal fibroblasts from venous ulcers are unresponsive to the action of transforming growth factor-β1[J].J Dermatol Sci,1997,16(1):59-66.DOI: 10.1016/s0923-1811(97)00622-1.
|
[18] |
WilkinsonHN,ClowesC,BanyardKL,et al.Elevated local senescence in diabetic wound healing is linked to pathological repair via CXCR2[J].J Invest Dermatol,2019,139(5):1171-1181.e6.DOI: 10.1016/j.jid.2019.01.005.
|
[19] |
OgataY,YamadaT,HasegawaS,et al.SASP-induced macrophage dysfunction may contribute to accelerated senescent fibroblast accumulation in the dermis[J].Exp Dermatol,2021,30(1):84-91.DOI: 10.1111/exd.14205.
|
[20] |
HahnO,GrönkeS,StubbsTM,et al.Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism[J].Genome Biol,2017,18(1):56.DOI: 10.1186/s13059-017-1187-1.
|
[21] |
PilsV,RingN,ValdiviesoK,et al.Promises and challenges of senolytics in skin regeneration, pathology and ageing[J].Mech Ageing Dev,2021,200:111588.DOI: 10.1016/j.mad.2021.111588.
|
[22] |
PereiraBI,DevineOP,Vukmanovic-StejicM,et al.Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition[J].Nat Commun,2019,10(1):2387.DOI: 10.1038/s41467-019-10335-5.
|
[23] |
KimKM,NohJH,BodogaiM,et al.Identification of senescent cell surface targetable protein DPP4[J].Genes Dev,2017,31(15):1529-1534.DOI: 10.1101/gad.302570.117.
|
[24] |
AmorC,FeuchtJ,LeiboldJ,et al.Senolytic CAR T cells reverse senescence-associated pathologies[J].Nature,2020,583(7814):127-132.DOI: 10.1038/s41586-020-2403-9.
|
[25] |
LagoumtziSM,ChondrogianniN.Senolytics and senomorphics: natural and synthetic therapeutics in the treatment of aging and chronic diseases[J].Free Radic Biol Med,2021,171:169-190.DOI: 10.1016/j.freeradbiomed.2021.05.003.
|
[26] |
LabergeRM,SunY,OrjaloAV,et al.MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation[J].Nat Cell Biol,2015,17(8):1049-1061.DOI: 10.1038/ncb3195.
|
[27] |
BaiGL,WangP,HuangX,et al.Rapamycin protects skin fibroblasts from UVA-induced photoaging by inhibition of p53 and phosphorylated HSP27[J].Front Cell Dev Biol,2021,9:633331.DOI: 10.3389/fcell.2021.633331.
|
[28] |
HanX,TaoYL,DengYP,et al.Metformin accelerates wound healing in type 2 diabetic db/db mice[J].Mol Med Rep,2017,16(6):8691-8698.DOI: 10.3892/mmr.2017.7707.
|
[29] |
Noren HootenN,Martin-MontalvoA,DluzenDF,et al.Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence[J].Aging Cell,2016,15(3):572-581.DOI: 10.1111/acel.12469.
|
[30] |
XuM,TchkoniaT,DingHS,et al.JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age[J].Proc Natl Acad Sci U S A,2015,112(46):E6301-6310.DOI: 10.1073/pnas.1515386112.
|
[31] |
KimmelJC,PenlandL,RubinsteinND,et al.Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging[J].Genome Res,2019,29(12):2088-2103.DOI: 10.1101/gr.253880.119.
|
[32] |
AngelidisI,SimonLM,FernandezIE,et al.An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics[J].Nat Commun,2019,10(1):963.DOI: 10.1038/s41467-019-08831-9.
|
[33] |
Muñoz-EspínD,RoviraM,GalianaI,et al.A versatile drug delivery system targeting senescent cells[J].EMBO Mol Med,2018,10(9):e9355.DOI: 10.15252/emmm.201809355.
|
[34] |
XuTY,CaiYB,ZhongXL,et al.β-galactosidase instructed supramolecular hydrogelation for selective identification and removal of senescent cells[J].Chem Commun (Camb),2019,55(50):7175-7178.DOI: 10.1039/c9cc03056e.
|
[35] |
HeYH,ZhangX,ChangJH,et al.Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity[J].Nat Commun,2020,11(1):1996.DOI: 10.1038/s41467-020-15838-0.
|
[36] |
MaT,TianX,ZhangBD,et al.Low-dose metformin targets the lysosomal AMPK pathway through PEN2[J].Nature,2022,603(7899):159-165.DOI: 10.1038/s41586-022-04431-8.
|
[37] |
NarztMS,PilsV,KremslehnerC,et al.Epilipidomics of senescent dermal fibroblasts identify lysophosphatidylcholines as pleiotropic senescence-associated secretory phenotype (SASP) factors[J].J Invest Dermatol,2021,141(4 Suppl):S993-1006.e15.DOI: 10.1016/j.jid.2020.11.020.
|
[38] |
WileyCD,SharmaR,DavisSS,et al.Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis[J].Cell Metab,2021,33(6):1124-1136.e5.DOI: 10.1016/j.cmet.2021.03.008.
|