Volume 40 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Yang LJ,Lyu YH,Lin J.Research advances on the non-coding RNAs carried by exosomes as competitive endogenous RNAs involved in wound healing[J].Chin J Burns Wounds,2024,40(6):594-599.DOI: 10.3760/cma.j.cn501225-20230811-00044.
Citation: Yang LJ,Lyu YH,Lin J.Research advances on the non-coding RNAs carried by exosomes as competitive endogenous RNAs involved in wound healing[J].Chin J Burns Wounds,2024,40(6):594-599.DOI: 10.3760/cma.j.cn501225-20230811-00044.

Research advances on the non-coding RNAs carried by exosomes as competitive endogenous RNAs involved in wound healing

doi: 10.3760/cma.j.cn501225-20230811-00044
Funds:

Youth Science Fund Program of National Natural Science Foundation of China 82301577

Shanghai Sailing Program 21YF1418800

More Information
  • Corresponding author: Lyu Yehui, Email: lvyh_15@sumhs.edu.cn
  • Received Date: 2023-08-11
    Available Online: 2024-06-21
  • In recent years, non-coding RNAs (ncRNAs) carried by exosomes have been shown to play an important regulatory role in multiple stages of wound healing. Exosomes can transport ncRNAs to different target cells or tissue and regulate the expression of target genes and downstream molecules. The proposed competing endogenous RNA (ceRNA) hypothesis suggests that RNAs can build a more sophisticated and complex gene regulatory network by competing for common response elements. Therefore, this review focuses on the long ncRNAs and circular RNAs carried by exosomes, discusses their regulatory roles as ceRNAs in the stages of inflammation, cell proliferation, and tissue remodeling in wound repair, respectively, and summarizes the feasibility of ncRNAs carried by exosomes as cell-free therapy, in order to provide a theoretical basis for clinical treatment of wounds.

     

  • loading
  • [1]
    RodriguesM, KosaricN, BonhamCA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019, 99(1): 665-706. DOI: 10.1152/physrev.00067.2017.
    [2]
    SalmenaL,PolisenoL,TayY,et al.A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?[J].Cell,2011,146(3):353-358.DOI: 10.1016/j.cell.2011.07.014.
    [3]
    XuYX,PuSD,LiX,et al.Exosomal ncRNAs: novel therapeutic target and biomarker for diabetic complications[J].Pharmacol Res,2022,178:106135.DOI: 10.1016/j.phrs.2022.106135.
    [4]
    PathanM,FonsekaP,ChittiSV,et al.Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles[J].Nucleic Acids Res,2019,47(D1):D516-D519.DOI: 10.1093/nar/gky1029.
    [5]
    KeerthikumarS, ChisangaD, AriyaratneD, et al. ExoCarta: a web-based compendium of exosomal cargo[J]. J Mol Biol, 2016, 428(4): 688-692. DOI: 10.1016/j.jmb.2015.09.019.
    [6]
    TanJY,MarquesAC.The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation[J].Adv Genet,2014,85:149-199.DOI: 10.1016/B978-0-12-800271-1.00003-2.
    [7]
    ShenJH,ZhaoX,ZhongYX,et al.Exosomal ncRNAs: the pivotal players in diabetic wound healing[J].Front Immunol,2022,13:1005307.DOI: 10.3389/fimmu.2022.1005307.
    [8]
    KoppF, MendellJT. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3): 393-407. DOI: 10.1016/j.cell.2018.01.011.
    [9]
    PatopIL,WüstS,S.PastKadener, present, and future of circRNAs[J].EMBO J,2019,38(16):e100836.DOI: 10.15252/embj.2018100836.
    [10]
    SalzmanJ. Circular RNA expression: its potential regulation and function[J]. Trends Genet, 2016, 32(5): 309-316. DOI: 10.1016/j.tig.2016.03.002.
    [11]
    RongDW,SunHD,LiZX,et al.An emerging function of circRNA-miRNAs-mRNA axis in human diseases[J].Oncotarget,2017,8(42):73271-73281.DOI: 10.18632/oncotarget.19154.
    [12]
    HouSQ, OuyangM, BrandmaierA, et al. PTEN in the maintenance of genome integrity: from DNA replication to chromosome segregation[J]. Bioessays, 2017, 39(10): 1700082. DOI: 10.1002/bies.201700082.
    [13]
    LiB, LuanS, ChenJ, et al. The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via microRNA-152-3p[J]. Mol Ther Nucleic Acids, 2020, 19: 814-826. DOI: 10.1016/j.omtn.2019.11.034.
    [14]
    KuangLW,ZhangCC,LiBH,et al.Human keratinocyte-derived exosomal MALAT1 promotes diabetic wound healing by upregulating MFGE8 via microRNA-1914-3p[J].Int J Nanomedicine,2023,18:949-970.DOI: 10.2147/IJN.S399785.
    [15]
    HormoziM,BaharvandP.Achillea biebersteinni Afan may inhibit scar formation: in vitro study[J].Mol Genet Genomic Med,2019,7(5):e640.DOI: 10.1002/mgg3.640.
    [16]
    QianL, PiL, FangBR, et al. Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis[J]. Lab Invest, 2021, 101(9): 1254-1266. DOI: 10.1038/s41374-021-00611-8.
    [17]
    TaoSC, RuiBY, WangQY, et al. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds[J]. Drug Deliv, 2018, 25(1): 241-255. DOI: 10.1080/10717544.2018.1425774.
    [18]
    HeL, ZhuC, JiaJ, et al. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway[J]. Biosci Rep, 2020, 40(5): BSR20192549. DOI: 10.1042/BSR20192549.
    [19]
    PiL, YangL, FangBR, et al. LncRNA MALAT1 from human adipose-derived stem cell exosomes accelerates wound healing via miR-378a/FGF2 axis[J]. Regen Med, 2022, 17(9): 627-641. DOI: 10.2217/rme-2021-0170.
    [20]
    ChenCH, WangQH, LiDB, et al. MALAT1 participates in the role of platelet-rich plasma exosomes in promoting wound healing of diabetic foot ulcer[J]. Int J Biol Macromol, 2023, 238: 124170. DOI: 10.1016/j.ijbiomac.2023.124170.
    [21]
    ZhuJL, QuanHG. Adipose-derived stem cells-derived exosomes facilitate cutaneous wound healing by delivering XIST and restoring discoidin domain receptor 2[J]. Cytokine, 2022, 158: 155981. DOI: 10.1016/j.cyto.2022.155981.
    [22]
    AnY, HuangF, TanXJ, et al. Exosomes of adipose tissue-derived stem cells promote wound healing by sponging miR-17-5p and inducing autophagy protein Ulk1[J]. Plast Reconstr Surg, 2023, 151(5): 1016-1028. DOI: 10.1097/PRS.0000000000010083.
    [23]
    BeheraJ, KumarA, VoorMJ, et al. Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice[J]. Theranostics, 2021, 11(16): 7715-7734. DOI: 10.7150/thno.58410.
    [24]
    HanZF, CaoJH, LiuZY, et al. Exosomal lncRNA KLF3-AS1 derived from bone marrow mesenchymal stem cells stimulates angiogenesis to promote diabetic cutaneous wound healing[J]. Diabetes Res Clin Pract, 2022, 183: 109126. DOI: 10.1016/j.diabres.2021.109126.
    [25]
    ShyuKG, WangBW, PanCM, et al. Hyperbaric oxygen boosts long noncoding RNA MALAT1 exosome secretion to suppress microRNA-92a expression in therapeutic angiogenesis[J]. Int J Cardiol, 2019, 274: 271-278. DOI: 10.1016/j.ijcard.2018.09.118.
    [26]
    陈鹏,杨凤英,顾志鹏,等.抗氧化水凝胶的研究进展[J].功能高分子学报,2021,34(2):182-194.DOI: 10.14133/j.cnki.1008-9357.20201213001.
    [27]
    ZhuZS, ChenB, PengL, et al. Blockade of LINC01605-enriched exosome generation in M2 macrophages impairs M2 macrophage-induced proliferation, migration, and invasion of human dermal fibroblasts[J]. Int J Immunopathol Pharmacol, 2021, 35: 20587384211016724. DOI: 10.1177/20587384211016724.
    [28]
    ChenJL, ZhouRP, LiangYM, et al. Blockade of lncRNA-ASLNCS5088-enriched exosome generation in M2 macrophages by GW4869 dampens the effect of M2 macrophages on orchestrating fibroblast activation[J]. FASEB J, 2019, 33(11): 12200-12212. DOI: 10.1096/fj.201901610.
    [29]
    ShiRF, JinYP, ZhaoSM, et al. Hypoxic ADSC-derived exosomes enhance wound healing in diabetic mice via delivery of circ-Snhg11 and induction of M2-like macrophage polarization[J]. Biomed Pharmacother, 2022, 153: 113463. DOI: 10.1016/j.biopha.2022.113463.
    [30]
    HuN, CaiZW, JiangXD, et al. Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing[J]. Acta Biomater, 2023, 157: 175-186. DOI: 10.1016/j.actbio.2022.11.057.
    [31]
    XiangYW, KuaiL, RuY, et al. Transcriptional profiling and circRNA-miRNA-mRNA network analysis identify the biomarkers in Sheng-ji Hua-yu formula treated diabetic wound healing[J]. J Ethnopharmacol, 2021, 268: 113643. DOI: 10.1016/j.jep.2020.113643.
    [32]
    LiQ, GuoL, WangJ, et al. Exosomes derived from Nr-CWS pretreated MSCs facilitate diabetic wound healing by promoting angiogenesis via the circIARS1/miR-4782-5p/VEGFA axis[J]. Chin J Nat Med, 2023, 21(3): 172-184. DOI: 10.1016/S1875-5364(23)60419-4.
    [33]
    LiangZH, LinSS, PanNF, et al. UCMSCs‐derived exosomal circHIPK3 promotes ulcer wound angiogenesis of diabetes mellitus via miR‐20b‐5p/Nrf2/VEGFA axis[J]. Diabet Med, 2023, 40(2): e14968. DOI: 10.1111/dme.14968.
    [34]
    WangY, ZhaoRZ, LiuWW, et al. Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway[J]. Oxid Med Cell Longev, 2019, 2019: 7954657. DOI: 10.1155/2019/7954657.
    [35]
    LiangZH, PanNF, LinSS, et al. Exosomes from mmu_circ_0001052-modified adipose-derived stem cells promote angiogenesis of DFU via miR-106a-5p and FGF4/p38MAPK pathway[J]. Stem Cell Res Ther, 2022, 13(1): 336. DOI: 10.1186/s13287-022-03015-7.
    [36]
    ShiRF, JinYP, HuWW, et al. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy[J]. Am J Physiol Cell Physiol, 2020, 318(5): C848-C856. DOI: 10.1152/ajpcell.00041.2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (80) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return