Chen HL,Li MJ,Luo YM,et al.Application of a standard communication system-based continuous home remote visit mode in the management of visits to severely burned patients in the post-pandemic era of coronavirus disease 2019[J].Chin J Burns,2021,37(11):1070-1077.DOI: 10.3760/cma.j.cn501120-20210315-00088.
Citation: Li YS,He WF,Lyu KY.Role and mechanism of Vγ4 T cell depletion in epidermal tissue repair after ultraviolet damage to mouse skin[J].Chin J Burns Wounds,2024,40(5):415-424.DOI: 10.3760/cma.j.cn501225-20240121-00026.

Role and mechanism of Vγ4 T cell depletion in epidermal tissue repair after ultraviolet damage to mouse skin

doi: 10.3760/cma.j.cn501225-20240121-00026
Funds:

Youth Science Fund Program of National Natural Science Foundation of China 32000645

More Information
  •   Objective  To explore the role and mechanism of Vγ4 T cell depletion in epidermal tissue repair after ultraviolet damage to mouse skin.  Methods  The study was an experimental study. Fifty-four female C57BL/6J wild-type mice aged 6 to 8 weeks were divided into Vγ4 T cell depletion group and control group (27 mice in each group) according to the random number table, and the Armenian hamster anti-mouse Vγ4 T cell receptor (TCR) monoclonal antibody of 200 µg and an equal amount of homologous control IgG antibody were intraperitoneally injected, respectively. At one week after injection (the same time point to harvest mice below), dermal cells and lymph node cells were respectively extracted from the back skin tissue, armpit and inguinal lymph nodes of 3 mice in each group (mice in following study were all taken from these 2 groups), and the proportions of Vγ4 T cells in dermal cells and lymph node cells were detected by flow cytometry. Five mice from each group were harvested for observation of skin on the back and skin tissue structure was observed and the epidermal tissue thickness was measured after hematoxylin-eosin (HE) staining. Five mice from each group were harvested for detection of proportion of dendritic epidermal T cells (DETCs) in epidermal cells by flow cytometry after extracted. Three mice were taken from each group and recruited in Vγ4 T cell depletion+5 times ultraviolet irradiation (UVR) group and control+5 times UVR group, respectively, then UVR was administered once per day for 5 times, and the condition of skin on the back was observed immediately after daily irradiation. Five mice were taken from each group and divided into Vγ4 T cell depletion+1 UVR group and control+1 UVR group, respectively. Immediately after one UVR treatment, the epidermal tissue thickness was measured after HE staining. Three mice from each group were selected and recruited in Vγ4 T cell depletion alone group and control alone group, then 3 mice from each group rwere recruited in Vγ4 T cell depletion+1 time UVR group and control+1 time UVR group, respectively, and were treated as before. The mRNA expressions of insulin-like growth factor-Ⅰ (IGF-Ⅰ), keratinocyte growth factor (KGF), Vγ5 TCR, interleukin-15 (IL-15), IL-1β, IL-23, natural killer group 2 member D (NKG2D), histocompatibility antigen 60 (H60), mouse UL16-binding protein-like transcript 1 (Mult1), and retinoic acid early inducible protein 1 (Rae1) in the epidermal tissue were detected by real-time fluorescent quantitative reverse transcription polymerase chain reaction.  Results  At one week after injection, the proportions of Vγ4 T cells in dermal cells and lymph node cells of mice in Vγ4 T cell depletion group were significantly lower than those in control group (with t values of 27.99 and 13.12, respectively, P<0.05); there were no statistically significant differences in the skin general condition and tissue structure of mice between Vγ4 T cell depletion group and control group; the epidermal tissue thickness of mice between Vγ4 T cell depletion group and control group was similar (P>0.05); the proportion of DETCs in epidermal cells of mice in Vγ4 T cell depletion group was (3.9±0.8)%, which was significantly higher than (1.6±0.5)% in control group (t=4.84, P<0.05). Compared with that in control+5 times UVR group, the skin scale increased after one UVR treatment, scaly scab appeared after 2 times of irradiation, and scaly scab increased significantly after 3 to 5 times of irradiation in Vγ4 T cell depletion+5 times UVR group. Immediately after UVR treatment, the epidermal tissue thickness of mice in Vγ4 T cell depletion+1 time UVR group was significantly increased compared with that in control+1 time UVR group (t=11.50, P<0.05). Compared with those in control alone group, the mRNA expression of Vγ5 TCR in the epidermal tissue of mice in Vγ4 T cell depletion alone group was up-regulated (t=41.16, P<0.05), while the mRNA expression of IL-23 was down-regulated (t=6.52, P<0.05); compared with those in control alone group, the mRNA expressions of Vγ5 TCR and KGF in the epidermal tissue of mice in control+1 time UVR group were significantly up-regulated (with t values of 15.22 and 13.22, respectively, P<0.05), while the mRNA expressions of IGF-Ⅰ and IL-23 were significantly down-regulated (with t values of 3.71 and 4.95, respectively, P<0.05); compared with those in Vγ4 T cell depletion alone group, the mRNA expressions of IGF-Ⅰ and KGF in the epidermal tissue of mice in Vγ4 T cell depletion+1 time UVR group were significantly up-regulated (with t values of 11.40 and 18.88, respectively, P<0.05), while the mRNA expression of IL-1β was significantly down-regulated (t=4.42, P<0.05); compared with those in control+1 time UVR group, the mRNA expressions of Vγ5 TCR, IGF-Ⅰ, and KGF in the epidermal tissue of mice in Vγ4 T cell depletion+1 time UVR group were significantly up-regulated (with t values of 4.52, 15.24, and 9.43, respectively, P<0.05); the mRNA expression of IL-15 in the epidermal tissue of mice in these 4 groups was generally similar (P>0.05). Compared with those in control alone group, the mRNA expressions of NKG2D and Rae1 in the epidermal tissue of mice in Vγ4 T cell depletion alone group were significantly up-regulated (with t values of 3.67 and 47.40, respectively, P<0.05), the mRNA expressions of NKG2D, Mult1, and Rae1 in the epidermal tissue of mice in control+1 time UVR group were significantly up-regulated (with t values of 5.30, 6.50, and 9.16, respectively, P<0.05); compared with those in Vγ4 T cell depletion alone group, the mRNA expressions of NKG2D, H60, Mult1, and Rae1 in the epidermal tissue of mice in Vγ4 T cell depletion+1 time UVR group were significantly down-regulated (with t values of 4.57, 4.13, 4.67, and 27.36, respectively, P<0.05); compared with those in control group+1 time UVR group, the mRNA expressions of NKG2D, H60, Mult1, and Rae1 in the epidermal tissue of mice in Vγ4 T cell depletion+1 time UVR group were significantly down-regulated (with t values of 5.77, 8.18, 12.90, and 8.08, respectively, P<0.05).  Conclusions  The clearance of Vγ4 T cells is conducive to the proliferation and down-regulation of cytotoxicity of DETCs, and may promote the repair of mouse epidermal damage after UVR.

     

  • [1]
    WittlichM, WesterhausenS, StrehlB, et al. The GENESIS-UV study on ultraviolet radiation exposure levels in 250 occupations to foster epidemiological and legislative efforts to combat nonmelanoma skin cancer[J]. Br J Dermatol, 2023,188(3):350-360. DOI: 10.1093/bjd/ljac093.
    [2]
    Castejón-GriñánM, CerdidoS, Sánchez-BeltránJ, et al. Melanoma-associated melanocortin 1 receptor variants confer redox signaling-dependent protection against oxidative DNA damage[J]. Redox Biol, 2024,72: 103135. DOI: 10.1016/j.redox.2024.103135.
    [3]
    SlominskiRM,ChenJY,RamanC,et al.Photo-neuro-immuno-endocrinology: how the ultraviolet radiation regulates the body, brain, and immune system[J].Proc Natl Acad Sci U S A,2024,121(14):e2308374121.DOI: 10.1073/pnas.2308374121.
    [4]
    FrascoliM, FerrajE, MiuB, et al. Skin γδ T cell inflammatory responses are hardwired in the thymus by oxysterol sensing via GPR183 and calibrated by dietary cholesterol[J]. Immunity, 2023,56(3):562-575.e6. DOI: 10.1016/j.immuni.2023.01.025.
    [5]
    WeiYX,SunGY,YangY,et al.Double-negative T cells ameliorate psoriasis by selectively inhibiting IL-17A-producing γδlow T cells[J].J Transl Med,2024,22(1):328.DOI: 10.1186/s12967-024-05132-8.
    [6]
    PeslierH,ReichartJ,BoursotC,et al.Extensive cutaneous-mucosal and muscular involvement of gamma/delta cutaneous T-cell lymphoma on 18F-FDG PET/CT[J].Clin Nucl Med,2024,49(5):e206-e207.DOI: 10.1097/RLU.0000000000005135.
    [7]
    YangYL, ZhouC, ChenQ, et al. YAP1/Piezo1 involve in the dynamic changes of lymphatic vessels in UVR-induced photoaging progress to squamous cell carcinoma[J]. J Transl Med, 2023,21(1):820. DOI: 10.1186/s12967-023-04458-z.
    [8]
    HarmonC, ZaborowskiA, MooreH, et al. γδ T cell dichotomy with opposing cytotoxic and wound healing functions in human solid tumors[J]. Nat Cancer, 2023,4(8):1122-1137. DOI: 10.1038/s43018-023-00589-w.
    [9]
    PetrovićJ,SilvaJR,BannermanCA,et al.γδ T cells modulate myeloid cell recruitment but not pain during peripheral inflammation[J].Front Immunol,2019,10:473.DOI: 10.3389/fimmu.2019.00473.
    [10]
    SonomotoK,SongR,ErikssonD,et al.High-fat-diet‐associated intestinal microbiota exacerbates psoriasis-like inflammation by enhancing systemic γδ T cell IL-17 production[J].Cell Rep,2023,42(7):112713.DOI: 10.1016/j.celrep.2023.112713.
    [11]
    LiuM, LiuZH, ChenYX, et al. Dendritic epidermal T cells secreting exosomes promote the proliferation of epidermal stem cells to enhance wound re-epithelialization[J]. Stem Cell Res Ther, 2022,13(1):121. DOI: 10.1186/s13287-022-02783-6.
    [12]
    ChenC, MengZY, RenH, et al. The molecular mechanisms supporting the homeostasis and activation of dendritic epidermal T cell and its role in promoting wound healing[J/OL]. Burns Trauma, 2021,9:tkab009[2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/34212060/.DOI: 10.1093/burnst/tkab009.
    [13]
    ThelenF, WitherdenDA. Get in touch with dendritic epithelial T cells![J]. Front Immunol, 2020,11:1656. DOI: 10.3389/fimmu.2020.01656.
    [14]
    HeiligJS, TonegawaS. Diversity of murine gamma genes and expression in fetal and adult T lymphocytes[J]. Nature, 1986,322(6082):836-840. DOI: 10.1038/322836a0.
    [15]
    LiYS, WuJ, LuoGX, et al. Functions of Vγ4 T cells and dendritic epidermal T cells on skin wound healing[J]. Front Immunol, 2018,9:1099. DOI: 10.3389/fimmu.2018.01099.
    [16]
    王珏, 张小容, 贺伟峰, 等. 树突状表皮T细胞在创面愈合中作用机制的研究进展[J].中华烧伤杂志,2021,37(3):296-300. DOI: 10.3760/cma.j.cn501120-20200226-00092.
    [17]
    LiYS, WangYP, ZhouLN, et al. Vγ4 T cells inhibit the pro-healing functions of dendritic epidermal T cells to delay skin wound closure through IL-17A[J]. Front Immunol, 2018,9:240. DOI: 10.3389/fimmu.2018.00240.
    [18]
    YangBW, LinYM, HuangYB, et al. Extracellular vesicles modulate key signalling pathways in refractory wound healing[J/OL]. Burns Trauma, 2023,11:tkad039[2024-01-21].https://pubmed.ncbi.nlm.nih.gov/38026441/.DOI: 10.1093/burnst/tkad039.
    [19]
    LiuZY,LiangGP,GuiL,et al.Weakened IL-15 production and impaired mTOR Activation alter dendritic epidermal T cell homeostasis in diabetic mice[J].Sci Rep,2017,7(1):6028.DOI: 10.1038/s41598-017-05950-5.
    [20]
    Dhillon-LaBrooyA, BrabandKL, TantawyE, et al. Inhibition of mitochondrial translation ameliorates imiquimod-induced psoriasis-like skin inflammation by targeting Vγ4+ γδ T cells[J]. J Invest Dermatol, 2024,144(4):844-854.e2. DOI: 10.1016/j.jid.2023.09.275.
    [21]
    LiYS, WangJ, WangYP, et al. IL-1β/NF-κB signaling inhibits IGF-1 production via let-7f-5p in dendritic epidermal T cells[J]. J Leukoc Biol, 2022,112(6):1677-1690. DOI: 10.1002/JLB.3MA0322-171R.
    [22]
    LiYS, HuangZG, YanRS, et al. Vγ4 γδ T cells provide an early source of IL-17A and accelerate skin graft rejection[J]. J Invest Dermatol, 2017,137(12):2513-2522. DOI: 10.1016/j.jid.2017.03.043.
    [23]
    WeiXR, LiMX, ZhengZJ, et al. Senescence in chronic wounds and potential targeted therapies[J/OL]. Burns Trauma, 2022,10:tkab045[2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/35187179/.DOI: 10.1093/burnst/tkab045.
    [24]
    NitaharaA, ShimuraH, ItoA, et al. NKG2D ligation without T cell receptor engagement triggers both cytotoxicity and cytokine production in dendritic epidermal T cells[J]. J Invest Dermatol, 2006,126(5):1052-1058. DOI: 10.1038/sj.jid.5700112.
    [25]
    CunninghamTJ,TabacchiM,ElianeJP,et al.Randomized trial of calcipotriol combined with 5-fluorouracil for skin cancer precursor immunotherapy[J].J Clin Invest,2017,127(1):106-116.DOI: 10.1172/JCI89820.
    [26]
    PeterleL,SanfilippoS,BorgiaF,et al.Alopecia areata: a review of the role of oxidative stress, possible biomarkers, and potential novel therapeutic approaches[J].Antioxidants (Basel),2023,12(1):135.DOI: 10.3390/antiox12010135.
    [27]
    XiangJ, QiuMH, ZhangHY. Role of dendritic epidermal T cells in cutaneous carcinoma[J]. Front Immunol, 2020,11:1266. DOI: 10.3389/fimmu.2020.01266.
    [28]
    IbusukiA,KawaiK,YoshidaS,et al.NKG2D triggers cytotoxicity in murine epidermal γδ T cells via PI3K-dependent, Syk/ZAP70-independent signaling pathway[J].J Invest Dermatol,2014,134(2):396-404.DOI: 10.1038/jid.2013.353.
    [29]
    WangYP, BaiY, LiYS, et al. IL-15 enhances activation and IGF-1 production of dendritic epidermal T cells to promote wound healing in diabetic mice[J]. Front Immunol, 2017,8:1557. DOI: 10.3389/fimmu.2017.01557.
    [30]
    Muñoz-RuizM, LlorianM, D'AntuonoR, et al. IFN-γ-dependent interactions between tissue-intrinsic γδ T cells and tissue-infiltrating CD8 T cells limit allergic contact dermatitis[J]. J Allergy Clin Immunol, 2023,152(6):1520-1540. DOI: 10.1016/j.jaci.2023.07.015.
    [31]
    NielsenMM, Dyring-AndersenB, SchmidtJD, et al. NKG2D-dependent activation of dendritic epidermal T cells in contact hypersensitivity[J]. J Invest Dermatol, 2015,135(5):1311-1319. DOI: 10.1038/jid.2015.23.
  • Relative Articles

    [1]Heng Xue, Li Changmin, Liu Wei, Li Ning, Yuan Zhiqiang, Peng Yizhi, Li Haisheng, Luo Gaoxing. Analysis of effects and influencing factors of continuous renal replacement therapy in severe burn patients complicated with acute kidney injury[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(5): 468-475. doi: 10.3760/cma.j.cn501225-20240207-00052
    [2]Li Ning, Chen Hualing, Li Maojun, Luo Gaoxing, Yuan Zhiqiang. Application effects of bundle nursing of citric acid extracorporeal anticoagulation on continuous renal replacement therapy of severe burn patients[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(1): 29-37. doi: 10.3760/cma.j.cn501120-20201201-00511
    [3]Jiang Bin, Shen Mingyan, Shen Tao. Nursing of one patient with extremely severe burn-blast combined injury complicated with acute kidney injury caused by dust explosion[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(7): 603-605. doi: 10.3760/cma.j.cn501120-20190415-00188
    [4]Li Xiaoliang, Xiao Hongtao, Li Yancang, Li Yanguang, Zhang Jian, Feng Ke, Di Haiping, Tian Shemin, Lou Jihe, Xia Chengde. Effects of citric acid on patients with severe burn complicated with acute renal injury treated by continuous renal replacement therapy[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(8): 568-573. doi: 10.3760/cma.j.issn.1009-2587.2019.08.003
    [5]Lyu Tao, Wang Lei, Liu Bing, Lou Jihe, Li Xiaoliang, Li Yancang, Li Shuren. Effect of continuous plasma filtration adsorption on treatment of severely burned patients with sepsis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(6): 370-373. doi: 10.3760/cma.j.issn.1009-2587.2018.06.011
    [6]Luo Xufang, Zhang Min, Zhao Dujuan, Lei Yan, Liu Juan, Bai Chen, Zhou Qin, Hu Xuehui. Influences of comprehensive nursing intervention on the caregivers of severely burned children[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(9): 648-652. doi: 10.3760/cma.j.issn.1009-2587.2018.09.016
    [7]Liu Wei, Chai Jiake. Influences of ulinastatin on acute lung injury and time phase changes of coagulation parameters in rats with burn-blast combined injuries[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(1): 32-39. doi: 10.3760/cma.j.issn.1009-2587.2018.01.007
    [8]Liu Feng, Huang Zhenggen, Peng Yizhi, Wu Jun, He Weifeng, Yuan Zhiqiang, Zhang Jiaping, Luo Qizhi, Yan Hong, Peng Daizhi, Dang Yongming, Luo Gaoxing. Clinical randomized controlled trial on the feasibility and validity of continuous blood purification during the early stage of severe burn[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(3): 133-139. doi: 10.3760/cma.j.issn.1009-2587.2016.03.002
    [10]Jia Chiyu, Zou Xiaofang. Current status in rehabilitation of burn injury in China[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2015, 31(3): 161-163. doi: 10.3760/cma.j.issn.1009-2587.2015.03.001
    [11]Meng Aihua, He Lixin, Liu Qiang, . Clinical study on continuous plasma filtration absorption treatment for burn sepsis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2014, 30(4): 310-314. doi: 10.3760/cma.j.issn.1009-2587.2014.04.005
    [12]Wang Yihe, Yang Hongming, Hu Quan, Hou Yusen, Luo Hongmin, Liu Lingying. Effects of sivelestat on acute lung injury in dogs with severe burn-blast combined injury Wang Yihe,[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2014, 30(2): 158-165. doi: 10.3760/cma.j.issn.1009-2587.2014.02.015
    [14]LI Lin, XU Le, WU Bo-yu, ZHENG You-jin. Investigation and analysis of factors influencing rehabilitation of burn patients[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2009, 25(6): 415-418. doi: 10.3760/cma.j.issn.1009-2587.2009.06.005
    [15]ZHU Pei-fang, WANG Zheng-guo. Burn-blast combined injury[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2008, 24(5): 384-386.
    [16]CHENG Tian-min, RAN Xin-ze. Studies on the treatment of combined radiation-burn injury[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2008, 24(5): 387-389.
    [17]YUE Li-qing, JIANG Dong-mei, HUANG Xiao-yuan. Investigation of life quality of severe burn patients at rehabilitation stage and analysis of the related influential factors[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2008, 24(3): 195-198.
    [19]LI Li. Influence of social support on the life quality of burn survivors[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2005, 21(4): 273-274.
  • Cited by

    Periodical cited type(6)

    1. 龚婷,陈思锋,莫春兰. 视频探视在重症监护病房中应用效果Meta分析. 实用临床医学. 2024(04): 100-106 .
    2. 朱婵,何林,张博文,梁英,赵海洋,齐宗师,梁敏,韩军涛,胡大海,刘佳琦. 儿童手烧伤后瘢痕挛缩家庭康复治疗模式的探索. 中华烧伤与创面修复杂志. 2023(01): 45-52 . 本站查看
    3. 周乾晓,冯灵,汪锐,涂双燕,徐丽莎,何凤鸣. 疫情背景下互联网视频技术在神经内科二级监护病区的应用现状. 中国社会医学杂志. 2023(02): 235-237 .
    4. 王雪敬,邓宝凤,罗昌春,赵玉荣,张爱军,刘海荣,赵艳梅. 新型冠状病毒感染期间远程探视系统在老年肿瘤住院病人中的应用. 实用老年医学. 2023(11): 1095-1098 .
    5. 刘园,邹琼,周灿,周爱梅. 云探视提高急诊重症监护室患者满意度研究调查分析. 中国当代医药. 2022(22): 161-164 .
    6. 李永亮,钟敏慧,朱芳,于婵,段霞. 慢性心力衰竭急性失代偿患者营养支持真实体验的质性研究. 中华现代护理杂志. 2022(35): 4870-4876 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 3.1 %FULLTEXT: 3.1 %META: 94.4 %META: 94.4 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 1.6 %其他: 1.6 %其他: 0.1 %其他: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.2 %China: 0.2 %Kennedy Town: 0.0 %Kennedy Town: 0.0 %Solapur: 0.0 %Solapur: 0.0 %[]: 0.0 %[]: 0.0 %三明: 0.6 %三明: 0.6 %三门峡: 1.5 %三门峡: 1.5 %上海: 1.4 %上海: 1.4 %东莞: 0.0 %东莞: 0.0 %临汾: 0.2 %临汾: 0.2 %丽水: 0.9 %丽水: 0.9 %乐山: 0.6 %乐山: 0.6 %亳州: 0.0 %亳州: 0.0 %佛山: 0.3 %佛山: 0.3 %保定: 0.6 %保定: 0.6 %六安: 0.7 %六安: 0.7 %兰州: 0.1 %兰州: 0.1 %加特契纳: 0.1 %加特契纳: 0.1 %包头: 0.5 %包头: 0.5 %北京: 0.8 %北京: 0.8 %北方邦: 0.1 %北方邦: 0.1 %十堰: 0.0 %十堰: 0.0 %南京: 0.5 %南京: 0.5 %南宁: 0.1 %南宁: 0.1 %南平: 1.7 %南平: 1.7 %南通: 0.7 %南通: 0.7 %厦门: 0.2 %厦门: 0.2 %合肥: 0.8 %合肥: 0.8 %吉林: 0.8 %吉林: 0.8 %周口: 0.0 %周口: 0.0 %呼和浩特: 0.3 %呼和浩特: 0.3 %咸阳: 0.6 %咸阳: 0.6 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.3 %唐山: 0.3 %嘉兴: 1.1 %嘉兴: 1.1 %大连: 2.1 %大连: 2.1 %天津: 0.5 %天津: 0.5 %太原: 0.1 %太原: 0.1 %宁德: 1.8 %宁德: 1.8 %宁波: 1.2 %宁波: 1.2 %安庆: 0.1 %安庆: 0.1 %安康: 1.4 %安康: 1.4 %宜宾: 0.0 %宜宾: 0.0 %宿迁: 4.4 %宿迁: 4.4 %常州: 0.0 %常州: 0.0 %常德: 0.7 %常德: 0.7 %广元: 0.3 %广元: 0.3 %广安: 0.3 %广安: 0.3 %广州: 3.4 %广州: 3.4 %张家口: 0.6 %张家口: 0.6 %张家界: 0.0 %张家界: 0.0 %徐州: 0.8 %徐州: 0.8 %德阳: 0.1 %德阳: 0.1 %怀化: 0.2 %怀化: 0.2 %成都: 0.3 %成都: 0.3 %扬州: 0.8 %扬州: 0.8 %抚州: 1.2 %抚州: 1.2 %抚顺: 0.5 %抚顺: 0.5 %拉贾斯坦邦: 0.1 %拉贾斯坦邦: 0.1 %日照: 0.6 %日照: 0.6 %昆明: 0.2 %昆明: 0.2 %景德镇: 0.9 %景德镇: 0.9 %朝阳: 0.5 %朝阳: 0.5 %杭州: 1.6 %杭州: 1.6 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.0 %桂林: 0.0 %榆林: 0.1 %榆林: 0.1 %武汉: 0.2 %武汉: 0.2 %汉中: 0.8 %汉中: 0.8 %汕头: 0.4 %汕头: 0.4 %池州: 0.7 %池州: 0.7 %沈阳: 1.2 %沈阳: 1.2 %泉州: 1.9 %泉州: 1.9 %泰州: 1.6 %泰州: 1.6 %洛阳: 0.1 %洛阳: 0.1 %济南: 1.1 %济南: 1.1 %济宁: 0.0 %济宁: 0.0 %海东: 0.0 %海东: 0.0 %海得拉巴: 0.1 %海得拉巴: 0.1 %淮北: 0.2 %淮北: 0.2 %淮南: 0.1 %淮南: 0.1 %淮安: 0.7 %淮安: 0.7 %深圳: 0.1 %深圳: 0.1 %温州: 1.5 %温州: 1.5 %渭南: 0.4 %渭南: 0.4 %湖州: 1.4 %湖州: 1.4 %湘潭: 0.1 %湘潭: 0.1 %湘西: 0.7 %湘西: 0.7 %湛江: 0.1 %湛江: 0.1 %滨州: 0.0 %滨州: 0.0 %漯河: 0.1 %漯河: 0.1 %漳州: 0.9 %漳州: 0.9 %濮阳: 0.1 %濮阳: 0.1 %烟台: 0.6 %烟台: 0.6 %盐城: 0.6 %盐城: 0.6 %盘锦: 0.1 %盘锦: 0.1 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.6 %福州: 0.6 %绍兴: 0.0 %绍兴: 0.0 %绵阳: 0.3 %绵阳: 0.3 %自贡: 0.2 %自贡: 0.2 %舟山: 1.1 %舟山: 1.1 %芒廷维尤: 8.6 %芒廷维尤: 8.6 %芜湖: 0.6 %芜湖: 0.6 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 1.0 %苏州: 1.0 %荆门: 0.4 %荆门: 0.4 %莆田: 2.4 %莆田: 2.4 %营口: 0.9 %营口: 0.9 %葫芦岛: 0.7 %葫芦岛: 0.7 %蚌埠: 0.2 %蚌埠: 0.2 %衡水: 0.4 %衡水: 0.4 %衡阳: 0.0 %衡阳: 0.0 %衢州: 2.4 %衢州: 2.4 %襄阳: 0.8 %襄阳: 0.8 %西宁: 0.9 %西宁: 0.9 %西安: 2.2 %西安: 2.2 %西雅图: 0.1 %西雅图: 0.1 %辽阳: 1.6 %辽阳: 1.6 %运城: 0.0 %运城: 0.0 %连云港: 0.6 %连云港: 0.6 %遵义: 0.3 %遵义: 0.3 %邵阳: 0.2 %邵阳: 0.2 %郑州: 0.3 %郑州: 0.3 %郴州: 1.1 %郴州: 1.1 %鄂木斯克: 0.2 %鄂木斯克: 0.2 %重庆: 3.2 %重庆: 3.2 %金华: 1.7 %金华: 1.7 %铁岭: 1.0 %铁岭: 1.0 %铜陵: 1.5 %铜陵: 1.5 %锦州: 1.1 %锦州: 1.1 %长春: 0.0 %长春: 0.0 %长沙: 0.5 %长沙: 0.5 %青岛: 0.1 %青岛: 0.1 %鞍山: 2.1 %鞍山: 2.1 %韶关: 0.0 %韶关: 0.0 %香港: 0.0 %香港: 0.0 %马鞍山: 0.0 %马鞍山: 0.0 %鹰潭: 0.5 %鹰潭: 0.5 %黄山: 0.1 %黄山: 0.1 %黄石: 0.1 %黄石: 0.1 %黔西南: 0.5 %黔西南: 0.5 %其他其他Central DistrictChinaKennedy TownSolapur[]三明三门峡上海东莞临汾丽水乐山亳州佛山保定六安兰州加特契纳包头北京北方邦十堰南京南宁南平南通厦门合肥吉林周口呼和浩特咸阳哈尔滨哥伦布唐山嘉兴大连天津太原宁德宁波安庆安康宜宾宿迁常州常德广元广安广州张家口张家界徐州德阳怀化成都扬州抚州抚顺拉贾斯坦邦日照昆明景德镇朝阳杭州格兰特县桂林榆林武汉汉中汕头池州沈阳泉州泰州洛阳济南济宁海东海得拉巴淮北淮南淮安深圳温州渭南湖州湘潭湘西湛江滨州漯河漳州濮阳烟台盐城盘锦石家庄福州绍兴绵阳自贡舟山芒廷维尤芜湖芝加哥苏州荆门莆田营口葫芦岛蚌埠衡水衡阳衢州襄阳西宁西安西雅图辽阳运城连云港遵义邵阳郑州郴州鄂木斯克重庆金华铁岭铜陵锦州长春长沙青岛鞍山韶关香港马鞍山鹰潭黄山黄石黔西南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (3726) PDF downloads(15) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return