Citation: | Wu HL,Chen YF,Li ST,et al.Analysis of the causal relationship between human immune cells and hypertrophic scar using two-sample bidirectional Mendelian randomization method[J].Chin J Burns Wounds,2024,40(6):572-578.DOI: 10.3760/cma.j.cn501225-20240203-00046. |
[1] |
CaiH, LiuX, LiuD, et al. GEO data mining identifies potential immune-related genes in hypertrophic scar and verities in a rabbit model[J]. Heliyon, 2023,9(7):e17266. DOI: 10.1016/j.heliyon.2023.e17266.
|
[2] |
LimandjajaGC, NiessenFB, ScheperRJ, et al. Hypertrophic scars and keloids: overview of the evidence and practical guide for differentiating between these abnormal scars[J]. Exp Dermatol, 2021,30(1):146-161. DOI: 10.1111/exd.14121.
|
[3] |
Ud-DinS, BayatA. Controlling inflammation pre-emptively or at the time of cutaneous injury optimises outcome of skin scarring[J]. Front Immunol, 2022,13:883239. DOI: 10.3389/fimmu.2022.883239.
|
[4] |
ShakerSA, AyuobNN, HajrahNH. Cell talk: a phenomenon observed in the keloid scar by immunohistochemical study[J]. Appl Immunohistochem Mol Morphol, 2011,19(2):153-159. DOI: 10.1097/PAI.0b013e3181efa2ef.
|
[5] |
GauglitzGG, KortingHC, PavicicT, et al. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies[J]. Mol Med, 2011,17(1/2):113-125. DOI: 10.2119/molmed.2009.00153.
|
[6] |
WangZC, ZhaoWY, CaoY, et al. The roles of inflammation in keloid and hypertrophic scars[J]. Front Immunol, 2020,11:603187. DOI: 10.3389/fimmu.2020.603187.
|
[7] |
WongVW, PaternoJ, SorkinM, et al. Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation[J]. FASEB J, 2011,25(12):4498-4510. DOI: 10.1096/fj.10-178087.
|
[8] |
ChenB, LiH, XiaW. Imiquimod regulating Th1 and Th2 cell-related chemokines to inhibit scar hyperplasia[J]. Int Wound J, 2019,16(6):1281-1288. DOI: 10.1111/iwj.13183.
|
[9] |
CarterAR, SandersonE, HammertonG, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation[J]. Eur J Epidemiol, 2021,36(5):465-478. DOI: 10.1007/s10654-021-00757-1.
|
[10] |
杨亮亮, 邓辰亮, 杨松林. 巨噬细胞在增生性瘢痕形成机制中的研究进展[J].中国美容整形外科杂志,2019,30(3):191-192,后插1. DOI: 10.3969/j.issn.1673-7040.2019.03.021.
|
[11] |
BoothbyIC, CohenJN, RosenblumMD. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair[J]. Sci Immunol, 2020,5(47):eaaz9631.DOI: 10.1126/sciimmunol.aaz9631.
|
[12] |
BirneyE. Mendelian randomization[J]. Cold Spring Harb Perspect Med, 2022,12(4):a041302.DOI: 10.1101/cshperspect.a041302.
|
[13] |
OrrùV, SteriM, SidoreC, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J]. Nat Genet, 2020,52(10):1036-1045. DOI: 10.1038/s41588-020-0684-4.
|
[14] |
SidoreC, BusoneroF, MaschioA, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers[J]. Nat Genet, 2015,47(11):1272-1281. DOI: 10.1038/ng.3368.
|
[15] |
GuJ, YanGM, KongXL, et al. Assessing the causal relationship between immune traits and systemic lupus erythematosus by bi-directional Mendelian randomization analysis[J]. Mol Genet Genomics, 2023,298(6):1493-1503. DOI: 10.1007/s00438-023-02071-9.
|
[16] |
1000 Genomes Project Consortium, AutonA, BrooksLD, et al. A global reference for human genetic variation[J]. Nature, 2015,526(7571):68-74. DOI: 10.1038/nature15393.
|
[17] |
ShortWD, OlutoyeOO, PadonBW, et al. Advances in non-invasive biosensing measures to monitor wound healing progression[J]. Front Bioeng Biotechnol, 2022,10:952198. DOI: 10.3389/fbioe.2022.952198.
|
[18] |
LiuY, Chinese Burn Association. Chinese expert consensus on the management of pediatric deep partial-thickness burn wounds (2023 edition)[J/OL]. Burns Trauma, 2023,11:tkad053[2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/37936895/. DOI: 10.1093/burnst/tkad053.
|
[19] |
AlBarashdi MA, AliA, McMullinMF, et al. Protein tyrosine phosphatase receptor type C (PTPRC or CD45)[J]. J Clin Pathol,2021,74(9):548-552. DOI: 10.1136/jclinpath-2020-206927.
|
[20] |
HollandDB, JeremyAH, RobertsSG, et al. Inflammation in acne scarring: a comparison of the responses in lesions from patients prone and not prone to scar[J]. Br J Dermatol, 2004,150(1):72-81. DOI: 10.1111/j.1365-2133.2004.05749.x.
|
[21] |
ChenZ, ZhouL, WonT, et al. Characterization of CD45RO+ memory T lymphocytes in keloid disease[J]. Br J Dermatol, 2018,178(4):940-950. DOI: 10.1111/bjd.16173.
|
[22] |
RoweM, HildrethJE, RickinsonAB, et al. Monoclonal antibodies to Epstein-Barr virus-induced, transformation-associated cell surface antigens: binding patterns and effect upon virus-specific T-cell cytotoxicity[J]. Int J Cancer, 1982,29(4):373-381. DOI: 10.1002/ijc.2910290403.
|
[23] |
樊华, 贺强. CD39与调节性T细胞的研究进展[J/CD].中华临床医师杂志(电子版),2013,7(17):125-126. DOI: 10.3877/cma.j.issn.1674-0785.2013.17.057.
|
[24] |
FerrariD, GambariR, IdzkoM, et al. Purinergic signaling in scarring[J]. FASEB J, 2016,30(1):3-12. DOI: 10.1096/fj.15-274563.
|
[25] |
EltzschigHK, SitkovskyMV, RobsonSC. Purinergic signaling during inflammation[J]. N Engl J Med, 2012,367(24):2322-2333. DOI: 10.1056/NEJMra1205750.
|
[26] |
FernándezP, Perez-AsoM, SmithG, et al. Extracellular generation of adenosine by the ectonucleotidases CD39 and CD73 promotes dermal fibrosis[J]. Am J Pathol, 2013,183(6):1740-1746. DOI: 10.1016/j.ajpath.2013.08.024.
|
[27] |
HuangX, GuS, LiuC, et al. CD39+ fibroblasts enhance myofibroblast activation by promoting IL-11 secretion in hypertrophic scars[J]. J Invest Dermatol, 2022,142(4):1065-1076.e19. DOI: 10.1016/j.jid.2021.07.181.
|
[28] |
ChenY, JinQ, FuX, et al. Connection between T regulatory cell enrichment and collagen deposition in keloid[J]. Exp Cell Res, 2019,383(2):111549. DOI: 10.1016/j.yexcr.2019.111549.
|
[29] |
KnoedlerS, KnoedlerL, Kauke-NavarroM, et al. Regulatory T cells in skin regeneration and wound healing[J]. Mil Med Res, 2023,10(1):49. DOI: 10.1186/s40779-023-00484-6.
|