Citation: | Xu J,Han XC,He L,et al.Analysis of biofilm genes and quorum sensing genes of carbapenem resistant Acinetobacter baumannii in the wounds of diabetic foot patients[J].Chin J Burns Wounds,2024,40(12):1166-1175.DOI: 10.3760/cma.j.cn501225-20240715-00269. |
[1] |
吴静,郭立新.中国糖尿病地图[M].北京:人民卫生出版社,2022.
|
[2] |
ChenL, SunS, GaoY, et al. Global mortality of diabetic foot ulcer: a systematic review and meta-analysis of observational studies[J]. Diabetes Obes Metab, 2023,25(1):36-45. DOI: 10.1111/dom.14840.
|
[3] |
王宁, 鞠上. 糖尿病足溃疡难愈合机制研究进展[J].中华烧伤与创面修复杂志,2022,38(11):1085-1089. DOI: 10.3760/cma.j.cn501225-20220227-00038.
|
[4] |
陈耀楠,王丹钰,袁倩,等. 糖尿病足溃疡慢性伤口的形成机制及新型敷料的研究进展[J]. 中华糖尿病杂志,2023,15(2):199-203. DOI: 10.3760/cma.j.cn115791-20220419-00173.
|
[5] |
郭庆娇, 欧阳静, 饶佳琴, 等. 糖尿病患者糖尿病足溃疡复发风险预测模型的构建及初步验证[J].中华烧伤与创面修复杂志,2023,39(12):1149-1157. DOI: 10.3760/cma.j.cn501225-20231101-00166.
|
[6] |
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J].中华糖尿病杂志,2021,13(4):315-409. DOI: 10.3760/cma.j.cn115791-20210221-00095.
|
[7] |
BusSA, LaveryLA, Monteiro-SoaresM, et al. Guidelines on the prevention of foot ulcers in persons with diabetes (IWGDF 2019 update)[J]. Diabetes Metab Res Rev, 2020,36Suppl 1:e3269. DOI: 10.1002/dmrr.3269.
|
[8] |
WangA, LvG, ChengX, et al. Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition)[J/OL]. Burns Trauma, 2020,8:tkaa017[2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/32685563/. DOI: 10.1093/burnst/tkaa017.
|
[9] |
NelsonRE, HyunD, JezekA, et al. Mortality, length of stay, and healthcare costs associated with multidrug-resistant bacterial infections among elderly hospitalized patients in the United States[J]. Clin Infect Dis, 2022,74(6):1070-1080. DOI: 10.1093/cid/ciab696.
|
[10] |
DuF, MaJ, GongH, et al. Microbial infection and antibiotic susceptibility of diabetic foot ulcer in China: literature review[J]. Front Endocrinol (Lausanne), 2022,13:881659. DOI: 10.3389/fendo.2022.881659.
|
[11] |
中国两网监测云-全国细菌耐药监测网[EB/OL].[2024-07-15]. https://carss.cn/sys/Htmls/dist/index.html. |
[12] |
XuJ, ChenW, HeL, et al. Most postoperative reserved "normal" metatarsal stumps of diabetic foot osteomyelitis are infected but have healing potential[J]. Front Endocrinol (Lausanne), 2023,14:1165305. DOI: 10.3389/fendo.2023.1165305.
|
[13] |
SennevilleE, GachetB, BlondiauxN, et al. Do anti-biofilm antibiotics have a place in the treatment of diabetic foot osteomyelitis?[J]. Antibiotics (Basel), 2023,12(2):317.DOI: 10.3390/antibiotics12020317.
|
[14] |
MeaHJ, YongP, WongEH. An overview of Acinetobacter baumannii pathogenesis: motility, adherence and biofilm formation[J]. Microbiol Res, 2021,247:126722. DOI: 10.1016/j.micres.2021.126722.
|
[15] |
YamabeK, ArakawaY, ShojiM, et al. Enhancement of Acinetobacter baumannii biofilm growth by cephem antibiotics via enrichment of protein and extracellular DNA in the biofilm matrices[J]. J Appl Microbiol, 2022,133(3):2002-2013. DOI: 10.1111/jam.15712.
|
[16] |
TammaPD, AitkenSL, BonomoRA, et al. Infectious diseases society of america guidance on the treatment of ampC β-lactamase-producing enterobacterales, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections[J]. Clin Infect Dis, 2022,74(12):2089-2114. DOI: 10.1093/cid/ciab1013.
|
[17] |
ChandranS, ManokaranY, VijayakumarS, et al. Enhanced bacterial killing with a combination of sulbactam/minocycline against dual carbapenemase-producing Acinetobacter baumannii[J]. Eur J Clin Microbiol Infect Dis,2023,42(5):645-651. DOI: 10.1007/s10096-023-04583-z.
|
[18] |
HillyerT, BeninBM, SunC,et al. A novel strategy to characterize the pattern of β-lactam antibiotic-induced drug resistance in Acinetobacter baumannii[J]. Sci Rep,2023,13(1):9177. DOI: 10.1038/s41598-023-36475-9.
|
[19] |
WatkinsRR, BonomoRA. Sulbactam-durlobactam: a step forward in treating carbapenem-resistant Acinetobacter baumannii (CRAB) infections[J]. Clin Infect Dis, 2023,76(Suppl 2):S163-S165. DOI: 10.1093/cid/ciad093.
|
[20] |
LeeCR, LeeJH, ParkM, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options[J]. Front Cell Infect Microbiol, 2017,7:55. DOI: 10.3389/fcimb.2017.00055.
|
[21] |
KarageorgopoulosDE, FalagasME. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections[J]. Lancet Infect Dis, 2008,8(12):751-762. DOI: 10.1016/S1473-3099(08)70279-2.
|
[22] |
MonemS, Furmanek-BlaszkB, ŁupkowskaA, et al. Mechanisms protecting Acinetobacter baumannii against multiple stresses triggered by the host immune response, antibiotics and outside-host environment[J]. Int J Mol Sci,2020,21(15):5498. DOI: 10.3390/ijms21155498.
|
[23] |
IovlevaA, McElhenyCL, FowlerEL, et al. In vitro activity of sulbactam-durlobactam against colistin-resistant and/or cefiderocol-non-susceptible, carbapenem-resistant Acinetobacter baumannii collected in U.S. hospitals[J]. Antimicrob Agents Chemother, 2024,68(3):e0125823. DOI: 10.1128/aac.01258-23.
|
[24] |
GiannellaM, VialeP. Treating carbapenem-resistant Acinetobacter baumannii infections[J]. Lancet Infect Dis, 2023,23(9):994-995. DOI: 10.1016/S1473-3099(23)00203-7.
|
[25] |
MillerWR, AriasCA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics[J]. Nat Rev Microbiol, 2024,22(10):598-616. DOI: 10.1038/s41579-024-01054-w.
|
[26] |
IovlevaA, MustaphaMM, GriffithMP, et al. Carbapenem-resistant Acinetobacter baumannii in U.S. hospitals: diversification of circulating lineages and antimicrobial resistance[J]. mBio, 2022,13(2):e0275921. DOI: 10.1128/mbio.02759-21.
|
[27] |
BulachD, CarterGP, LiL, et al. The whole-genome molecular epidemiology of sequential isolates of Acinetobacter baumannii colonizing the rectum of patients in an adult intensive care unit of a tertiary hospital[J]. Microbiol Spectr, 2023,11(6):e0219123. DOI: 10.1128/spectrum.02191-23.
|
[28] |
HamidianM, NigroSJ. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii[J]. Microb Genom, 2019,5(10):e000306. DOI: 10.1099/mgen.0.000306.
|
[29] |
GuD, WuY, ChenK, et al. Recovery and genetic characterization of clinically-relevant ST2 carbapenem-resistant Acinetobacter baumannii isolates from untreated hospital sewage in Zhejiang province, China[J]. Sci Total Environ, 2024,916:170058. DOI: 10.1016/j.scitotenv.2024.170058.
|
[30] |
PakharukovaN, MalmiH, TuittilaM, et al. Archaic chaperone-usher pili self-secrete into superelastic zigzag springs[J]. Nature, 2022,609(7926):335-340. DOI: 10.1038/s41586-022-05095-0.
|
[31] |
RomeroM, MayerC, HeebS, et al. Mushroom-shaped structures formed in Acinetobacter baumannii biofilms grown in a roller bioreactor are associated with quorum sensing-dependent Csu-pilus assembly[J]. Environ Microbiol, 2022,24(9):4329-4339. DOI: 10.1111/1462-2920.15985.
|
[32] |
AhmadI, NadeemA, MushtaqF, et al. Csu pili dependent biofilm formation and virulence of Acinetobacter baumannii[J]. NPJ Biofilms Microbiomes, 2023,9(1):101. DOI: 10.1038/s41522-023-00465-6.
|
[33] |
de BreijA, GaddyJ, van der MeerJ, et al. CsuA/BABCDE-dependent pili are not involved in the adherence of Acinetobacter baumannii ATCC19606(T) to human airway epithelial cells and their inflammatory response[J]. Res Microbiol, 2009,160(3):213-218. DOI: 10.1016/j.resmic.2009.01.002.
|
[34] |
ChoiAH, SlamtiL, AvciFY, et al. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-beta-1-6-N-acetylglucosamine, which is critical for biofilm formation[J]. J Bacteriol, 2009,191(19):5953-5963. DOI: 10.1128/JB.00647-09.
|
[35] |
WuHJ, XiaoZG, LvXJ, et al. Drug-resistant Acinetobacter baumannii: from molecular mechanisms to potential therapeutics (Review)[J]. Exp Ther Med, 2023,25(5):209. DOI: 10.3892/etm.2023.11908.
|
[36] |
YangCH, SuPW, MoiSH,et al. Biofilm formation in Acinetobacter baumannii: genotype-phenotype correlation[J]. Molecules, 2019,24(10):1849. DOI: 10.3390/molecules24101849.
|
[37] |
HardingCM, HennonSW, FeldmanMF. Uncovering the mechanisms of Acinetobacter baumannii virulence[J]. Nat Rev Microbiol, 2018,16(2):91-102. DOI: 10.1038/nrmicro.2017.148.
|
[38] |
MendesSG, ComboSI, AllainT, et al. Co-regulation of biofilm formation and antimicrobial resistance in Acinetobacter baumannii: from mechanisms to therapeutic strategies[J]. Eur J Clin Microbiol Infect Dis, 2023,42(12):1405-1423. DOI: 10.1007/s10096-023-04677-8.
|
[39] |
KimSY, KimMH, KimSI, et al. The sensor kinase BfmS controls production of outer membrane vesicles in Acinetobacter baumannii[J]. BMC Microbiol, 2019,19(1):301. DOI: 10.1186/s12866-019-1679-0.
|
[40] |
TiwariV, PatelV, TiwariM. In-silico screening and experimental validation reveal L-Adrenaline as anti-biofilm molecule against biofilm-associated protein (Bap) producing Acinetobacter baumannii[J]. Int J Biol Macromol, 2018,107(Pt A):1242-1252. DOI: 10.1016/j.ijbiomac.2017.09.105.
|
[41] |
UpmanyuK, KumarR, Rizwanul HaqueQM, et al. Exploring the evolutionary and pathogenic role of Acinetobacter baumannii biofilm-associated protein (Bap) through in silico structural modeling[J]. Arch Microbiol,2024,206(6):267.DOI: 10.1007/s00203-024-03992-8.
|
[42] |
MohamadTS, RahmanJK, AhmedAA, et al. Down-regulation of abaI, abaR, Bap and OmpA genes in Acinetobacter baumannii by ethanol extract of Glycyrrhiza glabra after toxicity assessment[J]. Cell Mol Biol (Noisy-le-grand),2023,69(12):194-200. DOI: 10.14715/cmb/2023.69.12.31.
|
[43] |
LiouML, SooPC, LingSR, et al. The sensor kinase BfmS mediates virulence in Acinetobacter baumannii[J]. J Microbiol Immunol Infect, 2014,47(4):275-281. DOI: 10.1016/j.jmii.2012.12.004.
|
[44] |
KimHJ, KimNY, KoSY, et al. Complementary regulation of BfmRS two-component and AbaIR quorum sensing systems to express virulence-associated genes in Acinetobacter baumannii[J]. Int J Mol Sci, 2022,23(21):13136. DOI: 10.3390/ijms232113136.
|
[45] |
LiY, WangB, LuF, et al. Synergistic inhibitory effect of polymyxin B in combination with ceftazidime against robust biofilm formed by Acinetobacter baumannii with genetic deficiency in AbaI/AbaR quorum sensing[J]. Microbiol Spectr, 2022,10(1):e0176821. DOI: 10.1128/spectrum.01768-21.
|
[46] |
PaluchE, Rewak-SoroczyńskaJ, JędrusikI, et al. Prevention of biofilm formation by quorum quenching[J]. Appl Microbiol Biotechnol, 2020,104(5):1871-1881. DOI: 10.1007/s00253-020-10349-w.
|
[47] |
LawSKK, TanHS. The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies[J]. Microbiol Res, 2022,260:127032. DOI: 10.1016/j.micres.2022.127032.
|
[48] |
LiH, LiuF, ZhangY, et al. Evolution of carbapenem-resistant Acinetobacter baumannii revealed through whole-genome sequencing and comparative genomic analysis[J]. Antimicrob Agents Chemother, 2015,59(2):1168-1176. DOI: 10.1128/AAC.04609-14.
|
[49] |
HackelMA, TsujiM, YamanoY, et al. In vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant Gram-negative bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 study)[J]. Antimicrob Agents Chemother, 2017,61(9):e00093-17. DOI: 10.1128/AAC.00093-17.
|
[50] |
LeeYL, KoWC, HsuehPR. Geographic patterns of Acinetobacter baumannii and carbapenem resistance in the Asia-Pacific Region: results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2012-2019[J]. Int J Infect Dis, 2023,127:48-55. DOI: 10.1016/j.ijid.2022.12.010.
|
[51] |
NigroSJ, HallRM. Does the intrinsic oxaAb (blaOXA-51-like) gene of Acinetobacter baumannii confer resistance to carbapenems when activated by ISAba1?[J]. J Antimicrob Chemother, 2018,73(12):3518-3520. DOI: 10.1093/jac/dky334.
|
[52] |
AnggrainiD, KemalRA, HadiU, et al. The susceptibility pattern and distribution of blaOXA-23 genes of clinical isolate Acinetobacter baumannii in a tertiary hospital, Indonesia[J]. J Infect Dev Ctries,2022,16(5):821-826. DOI: 10.3855/jidc.15902.
|
[53] |
AbouelhassanY, NicolauDP, AbdelraoufK. Defining optimal sulbactam regimens for treatment of Acinetobacter baumannii pneumonia and impact of blaOXA-23 on efficacy[J]. J Antimicrob Chemother, 2024,79(9):2306-2316. DOI: 10.1093/jac/dkae229.
|
[54] |
NeupaneL, SahAK, RayamajheeB, et al. Detection of blaoxa-23 gene from carbapenem-resistant Acinetobacter baumannii[J]. J Nepal Health Res Counc,2023,20(4):899-905. DOI: 10.33314/jnhrc.v20i4.4257.
|
[55] |
LiuS, HuangG, GongY, et al. Rapid and accurate detection of carbapenem-resistance gene by isothermal amplification in Acinetobacter baumannii[J/OL]. Burns Trauma,2020,8:tkaa026[2024-07-15]. https://pubmed.ncbi.nlm.nih.gov/32905076/. DOI: 10.1093/burnst/tkaa026.
|
![]() |
![]() |