Citation: | Bai Xiaozhi,Tao Ke,Liu Yang,et al.Effects and underlying mechanism of exosomes of adipose-derived mesenchymal stem cells on acute lung injury of septic mice[J].Chin J Burns Wounds,2024,40(12):1-10.DOI: 10.3760/cma.j.cn501225-20240927-00355. |
[1] |
LongME, MallampalliRK, HorowitzJC. Pathogenesis of pneumonia and acute lung injury[J]. Clin Sci (Lond), 2022,136(10):747-769. DOI: 10.1042/CS20210879.
|
[2] |
LocatiM, CurtaleG, DiversityMantovani A., mechanisms, and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020,15:123-147. DOI: 10.1146/annurev-pathmechdis-012418-012718.
|
[3] |
OishiY, ManabeI. Macrophages in inflammation, repair and regeneration[J]. Int Immunol, 2018,30(11):511-528. DOI: 10.1093/intimm/dxy054.
|
[4] |
SchumackerPT, GillespieMN, NakahiraK, et al. Mitochondria in lung biology and pathology: more than just a powerhouse[J]. Am J Physiol Lung Cell Mol Physiol, 2014,306(11):L962-974. DOI: 10.1152/ajplung.00073.2014.
|
[5] |
KellnerM, NoonepalleS, LuQ, et al. ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS)[J]. Adv Exp Med Biol, 2017,967:105-137. DOI: 10.1007/978-3-319-63245-2_8.
|
[6] |
邱煜程, 周显玉, 刘菲, 等. 间充质干细胞及其外泌体在移植中的应用进展[J].组织工程与重建外科杂志,2023,19(2):184-188. DOI: 10.3969/j.issn.1673-0364.2023.02.016.
|
[7] |
YuT, LiuH, GaoM, et al. Dexmedetomidine regulates exosomal miR-29b-3p from macrophages and alleviates septic myocardial injury by promoting autophagy in cardiomyocytes via targeting glycogen synthase kinase3β[J/OL]. Burns Trauma, 2024,12:tkae042[2024-09-27].https://pubmed.ncbi.nlm.nih.gov/39502342/. DOI: 10.1093/burnst/tkae042.
|
[8] |
蒲倩, 修光辉, 孙洁, 等. 间充质干细胞外泌体在脓毒症多器官功能障碍中作用的研究进展[J].中华危重病急救医学,2021,33(6):757-760. DOI: 10.3760/cma.j.cn121430-20200908-00620.
|
[9] |
HuQ, LyonCJ, FletcherJK, et al. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses[J]. Acta Pharm Sin B, 2021,11(6):1493-1512. DOI: 10.1016/j.apsb.2020.12.014.
|
[10] |
JingW, WangH, ZhanL, et al. Extracellular vesicles, new players in sepsis and acute respiratory distress syndrome[J]. Front Cell Infect Microbiol, 2022,12:853840. DOI: 10.3389/fcimb.2022.853840.
|
[11] |
HommaK, BazhanovN, HashimotoK, et al. Mesenchymal stem cell-derived exosomes for treatment of sepsis[J]. Front Immunol, 2023,14:1136964. DOI: 10.3389/fimmu.2023.1136964.
|
[12] |
GongT, LiuYT, FanJ. Exosomal mediators in sepsis and inflammatory organ injury: unraveling the role of exosomes in intercellular crosstalk and organ dysfunction[J]. Mil Med Res, 2024,11(1):24. DOI: 10.1186/s40779-024-00527-6.
|
[13] |
BaiX, LiJ, LiL, et al. Extracellular vesicles from adipose tissue-derived stem cells affect Notch-miR148a-3p axis to regulate polarization of macrophages and alleviate sepsis in mice[J]. Front Immunol, 2020,11:1391. DOI: 10.3389/fimmu.2020.01391.
|
[14] |
DejagerL, PinheiroI, DejonckheereE, et al. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis?[J]. Trends Microbiol, 2011,19(4):198-208. DOI: 10.1016/j.tim.2011.01.001.
|
[15] |
JiaoY, ZhangT, ZhangC, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury[J]. Crit Care, 2021,25(1):356. DOI: 10.1186/s13054-021-03775-3.
|
[16] |
BaiX, HeT, LiuY, et al. Acetylation-dependent regulation of notch signaling in macrophages by SIRT1 affects sepsis development[J]. Front Immunol, 2018,9:762. DOI: 10.3389/fimmu.2018.00762.
|
[17] |
蔡维霞, 沈括, 曹涛, 等. 人脂肪间充质干细胞来源外泌体对脓毒症小鼠肺血管内皮细胞损伤的影响及其机制[J].中华烧伤与创面修复杂志,2022,38(3):266-275. DOI: 10.3760/cma.j.cn501120-20211020-00362.
|
[18] |
ShenK, WangX, WangY, et al. miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury[J]. Redox Biol, 2023,62:102655. DOI: 10.1016/j.redox.2023.102655.
|
[19] |
WuH, WangY, ZhangY, et al. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress[J]. Redox Biol, 2020,32:101500. DOI: 10.1016/j.redox.2020.101500.
|
[20] |
XuH, QiQ, YanX. Myricetin ameliorates sepsis-associated acute lung injury in a murine sepsis model[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021,394(1):165-175. DOI: 10.1007/s00210-020-01880-8.
|
[21] |
JinC, ChenJ, GuJ, et al. Gut-lymph-lung pathway mediates sepsis-induced acute lung injury[J]. Chin Med J (Engl), 2020,133(18):2212-2218. DOI: 10.1097/CM9.0000000000000928.
|
[22] |
YehyaN, SmithL, ThomasNJ, et al. Definition, incidence, and epidemiology of pediatric acute respiratory distress syndrome: from the Second Pediatric Acute Lung Injury Consensus Conference[J]. Pediatr Crit Care Med, 2023,24(12 Suppl 2):S87-98. DOI: 10.1097/PCC.0000000000003161.
|
[23] |
赵松韵, 万志杰, 曹曦元, 等. 靶向DNA损伤应答在小细胞肺癌中的作用研究进展[J].解放军医学杂志,2022,47(8):838-844. DOI: 10.11855/j.issn.0577-7402.2022.08.0838.
|
[24] |
李林, 邢福席, 付全有, 等. 脓毒症急性肺损伤治疗的研究进展[J].中华医院感染学杂志,2024,34(1):149-155. DOI: 10.11816/cn.ni.2024-236123.
|
[25] |
ZhangW, ChenH, XuZ, et al. Liensinine pretreatment reduces inflammation, oxidative stress, apoptosis, and autophagy to alleviate sepsis acute kidney injury[J]. Int Immunopharmacol, 2023,122:110563. DOI: 10.1016/j.intimp.2023.110563.
|
[26] |
Bar-OrD, CarrickMM, MainsCW, et al. Sepsis, oxidative stress, and hypoxia: are there clues to better treatment?[J] Redox Rep, 2015,20(5):193-197. DOI: 10.1179/1351000215Y.0000000005.
|
[27] |
JoffreJ, HellmanJ. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation[J]. Antioxid Redox Signal, 2021,35(15):1291-1307. DOI: 10.1089/ars.2021.0027.
|
[28] |
WangX, ChenS, LuR, et al. Adipose-derived stem cell-secreted exosomes enhance angiogenesis by promoting macrophage M2 polarization in type 2 diabetic mice with limb ischemia via the JAK/STAT6 pathway[J]. Heliyon, 2022,8(11):e11495. DOI: 10.1016/j.heliyon.2022.e11495.
|
[29] |
WestAP, BrodskyIE, RahnerC, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS[J]. Nature, 2011,472(7344):476-480. DOI: 10.1038/nature09973.
|
[30] |
WestAP, Khoury-HanoldW, StaronM, et al. Mitochondrial DNA stress primes the antiviral innate immune response[J]. Nature, 2015,520(7548):553-557. DOI: 10.1038/nature14156.
|
[31] |
WangZ, WhiteA, WangX, et al. Mitochondrial fission mediated cigarette smoke-induced pulmonary endothelial injury[J]. Am J Respir Cell Mol Biol, 2020,63(5):637-651. DOI: 10.1165/rcmb.2020-0008OC.
|
[32] |
VidelaLA, MarimánA, RamosB, et al. Standpoints in mitochondrial dysfunction: underlying mechanisms in search of therapeutic strategies[J]. Mitochondrion, 2022,63:9-22. DOI: 10.1016/j.mito.2021.12.006.
|
[33] |
HoffmannRF, ZarrintanS, BrandenburgSM, et al. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells[J]. Respir Res, 2013,14(1):97. DOI: 10.1186/1465-9921-14-97.
|
[34] |
GalleyHF. Oxidative stress and mitochondrial dysfunction in sepsis[J]. Br J Anaesth, 2011, 107(1):57-64. DOI: 10.1093/bja/aer093.
|
[35] |
XianH, LiuY, Rundberg NilssonA, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation[J]. Immunity, 2021,54(7):1463-1477.e11. DOI: 10.1016/j.immuni.2021.05.004.
|
[36] |
ZhongZ, LiangS, Sanchez-LopezE, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation[J]. Nature, 2018,560(7717):198-203. DOI: 10.1038/s41586-018-0372-z.
|
[37] |
XuZ, ShenJ, LinL, et al. Exposure to irregular microplastic shed from baby bottles activates the ROS/NLRP3/Caspase-1 signaling pathway, causing intestinal inflammation[J]. Environ Int, 2023,181:108296. DOI: 10.1016/j.envint.2023.108296.
|
[38] |
Shang-GuanK, WangM, HtweN, et al. Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations[J]. Plant Physiol, 2018,176(3):2543-2556. DOI: 10.1104/pp.17.01637.
|
[39] |
CaiS, ZhaoM, ZhouB, et al. Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction[J]. J Clin Invest, 2023,133(4)DOI: 10.1172/JCI159498.
|