Zhang JP,Yuan X,Jiang XP,et al.Aesthetic reconstruction of the scar contracture deformity in chin and neck with expanded flaps based on the "MRIS" principle[J].Chin J Burns Wounds,2022,38(4):306-312.DOI: 10.3760/cma.j.cn501120-20211130-00401.
Citation: Wu YT,Zhang Z,Ji R,et al.Regulatory effects of bio-intensity electric field on microtubule acetylation in human epidermal cell line HaCaT[J].Chin J Burns Wounds,2022,38(11):1066-1072.DOI: 10.3760/cma.j.cn501120-20211105-00377.

Regulatory effects of bio-intensity electric field on microtubule acetylation in human epidermal cell line HaCaT

doi: 10.3760/cma.j.cn501120-20211105-00377
Funds:

Gerenal Program of National Natural Science Foundation of China 82072172

Youth Found of National Natural Science Foundation of China 81601683

More Information
  •   Objective  To investigate the regulatory effects of bio-intensity electric field on directional migration and microtubule acetylation in human epidermal cell line HaCaT, aiming to provide molecular theoretical basis for the clinical treatment of wound repair.  Methods  The experimental research methods were used. HaCaT cells were collected and divided into simulated electric field group (n=54) placed in the electric field device without electricity for 3 h and electric field treatment group (n=52) treated with 200 mV/mm electric field for 3 h (the same treatment methods below). The cell movement direction was observed in the living cell workstation and the movement velocity, trajectory velocity, and direction of cosθ of cell movement within 3 h of treatment were calculated. HaCaT cells were divided into simulated electric field group and electric field treatment 1 h group, electric field treatment 2 h group, and electric field treatment 3 h group which were treated with 200 mV/mm electric field for corresponding time. HaCaT cells were divided into simulated electric field group and 100 mV/mm electric field group, 200 mV/mm electric field group, and 300 mV/mm electric field group treated with electric field of corresponding intensities for 3 h. The protein expression of acetylated α-tubulin was detected by Western blotting (n=3). HaCaT cells were divided into simulated electric field group and electric field treatment group, and the protein expression of acetylated α-tubulin was detected and located by immunofluorescence method (n=3). Data were statistically analyzed with Kruskal-Wallis H test,Mann-Whitney U test, Bonferroni correction, one-way analysis of variance, least significant difference test, and independent sample t test.  Results  Within 3 h of treatment, compared with that in simulated electric field group, the cells in electric field treatment group had obvious tendency to move directionally, the movement velocity and trajectory velocity were increased significantly (with Z values of -8.53 and -2.05, respectively, P<0.05 or P<0.01), and the directionality was significantly enhanced (Z=-8.65, P<0.01). Compared with (0.80±0.14) in simulated electric field group, the protein expressions of acetylated α-tubulin in electric field treatment 1 h group (1.50±0.08) and electric field treatment 2 h group (1.89±0.06) were not changed obviously (P>0.05), while the protein expression of acetylated α-tubulin of cells in electric field treatment 3 h group (3.37±0.36) was increased significantly (Z=-3.06, P<0.05). After treatment for 3 h, the protein expressions of acetylated α-tubulin of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 300 mV/mm electric field group were 1.63±0.05, 2.24±0.08, and 2.00±0.13, respectively, which were significantly more than 0.95±0.27 in simulated electric field group (P<0.01). Compared with that in 100 mV/mm electric field group, the protein expressions of acetylated α-tubulin in 200 mV/mm electric field group and 300 mV/mm electric field group were increased significantly (P<0.01); the protein expression of acetylated α-tubulin of cells in 300 mV/mm electric field group was significantly lower than that in 200 mV/mm electric field group (P<0.05). After treatment for 3 h, compared with that in simulated electric field group, the acetylated α-tubulin of cells had enhanced directional distribution and higher protein expression (t=5.78, P<0.01).  Conclusions  Bio-intensity electric field can induce the directional migration of HaCaT cells and obviously up-regulate the level of α-ubulin acetylation after treatment at 200 mV/mm bio-intensity electric field for 3 h.

     

  • 近年来,随着我国经济的快速发展,瘢痕患者对手术修复后的美观要求不断提高。颏部与颈部在解剖上紧密相连,既是人体功能部位,又是重要的美学单元。颏颈部深度烧伤后常常出现瘢痕挛缩,导致功能障碍和容貌毁损。自20世纪50年代以来,颏颈部瘢痕畸形的整复手术经历了从皮片移植术到(扩张)皮瓣移植术的发展过程,形成了修复遵循亚单位原则、移植物遵循供区相似替代(like to like)原则,以及以重建颈颏角为重点的畸形矫正策略,显著提升了修复质量1, 2, 3, 4, 5, 6。然而,作为人体重要的美学单元,颏颈部具有丰富的局部美学特征,除颈颏角外,还包括下唇缘、颏唇沟、下颏突起、最适下颏长度和下颌缘轮廓线等。这些美学特征常因瘢痕而破坏,若不能在手术中予以重构,则术后仍难达到良好的美学形态。本研究团队在前人基础上,提出以重构上述亚单位局部美学特征为核心的颏颈部瘢痕挛缩畸形美学整复策略,即修复皮瓣色泽与厚度匹配(match)、亚单位美学特征重构(reconstruction)、按整形原则设计切口(incision)和预防手术切口瘢痕(scar)的“MRIS”原则,以期进一步提升颏颈部瘢痕挛缩畸形术后美学效果。

    本回顾性观察性研究符合《赫尔辛基宣言》的基本原则,仅对病历资料进行回顾性分析,不泄露患者隐私。

    纳入标准:确诊为烧伤后颏颈部瘢痕挛缩畸形,接受基于“MRIS”原则的颏颈部瘢痕挛缩畸形治疗,术后随访3个月以上者。排除标准:病历资料不全的患者。

    2017年12月—2021年4月,陆军军医大学(第三军医大学)第一附属医院整形外科收治的34例烧伤后颏颈部瘢痕挛缩畸形患者符合入选标准,纳入本研究。患者中男13例、女21例,年龄12~54岁,瘢痕挛缩畸形病程5个月~27年。原发致伤原因均为热力烧伤。患者中,单纯颏部瘢痕挛缩畸形者4例、单纯颈部瘢痕挛缩畸形者7例、颏部和颈部均受累的瘢痕挛缩畸形者23例。瘢痕面积48~252 cm2。所有患者均存在颏部和/或颈部多个美学特征破坏或消失,如小口畸形,唇外翻,下颏短小和/或退缩,颏唇沟、下颏突起、下颌缘轮廓线或颈颏角消失等。15例患者既往行局部瘢痕松解+植皮术。

    手术在静脉复合麻醉下分2期进行:Ⅰ期埋置皮肤软组织扩张器(以下简称扩张器),以形成扩张(穿支)皮瓣;Ⅱ期行瘢痕切除+切取扩张皮瓣修复继发创面,将供瓣区直接缝合。治疗遵循“MRIS”原则。

    1.3.1   修复皮瓣色泽与厚度匹配

    扩张器的埋置部位优选局部和邻位,使形成的扩张皮瓣与颏颈部皮肤色泽接近。对于颏部瘢痕患者,若颏下区有足量正常皮肤,则选择于颏下区埋置扩张器;否则,优选于肩部锁骨上动脉穿支皮瓣供瓣区埋置扩张器。对于颈部严重瘢痕患者,优选于邻位肩胸部穿支皮瓣供瓣区埋置扩张器,包括锁骨上动脉穿支皮瓣、颈横动脉颈段皮支皮瓣和胸廓内动脉第2肋间穿支皮瓣供瓣区。本组病例埋置的扩张器为额定容量80~400 mL的长方形或肾形扩张器,术后每周注射生理盐水1次扩张,最终将扩张器扩张至其额定容量的3~5倍。

    1.3.2   亚单位美学特征重构

    以舌骨为界,该研究团队将颏颈部分为2个美学亚单位:(1)颏部美学亚单位,包括下唇、下颏和颏下区;(2)颈部美学亚单位,包括颈前区(不含颏下区)和胸锁乳突肌区。亚单位美学特征重构的要点如下:(1)按亚单位切除瘢痕与修复。对于颏部瘢痕,若范围超过下颏的2/3,通常行颏部瘢痕全切除,切除范围两侧至颏面沟,上界至下唇缘,下界至下颌骨下缘。对于颈部广泛瘢痕,切除范围上界至下颌骨下缘,下界至胸锁关节与锁骨一线,两侧至胸锁乳突肌后缘。切除组织包括瘢痕和皮下脂肪。原则上,各亚单位尽可能以单一皮瓣修复。(2)重建局部美学特征。术中切除瘢痕后,基于美学标准,重建亚单位内局部美学特征。对于颏部瘢痕挛缩患者,若伴有唇外翻,术中设计新的下唇缘,松解和切除挛缩组织,重构出下唇形态并行颏唇沟再造;若伴有小口畸形,采用Y-V黏膜瓣行小口开大术;若伴有下颏畸形,则行下颏成形术。对于单纯下颏退缩者,利用扩张皮瓣的厚度增厚下颏突起;若同时伴有下颏短小和退缩,则利用扩张皮瓣延长下颌长度和重构下颏突起,具体方法是在断蒂时将皮瓣蒂部从皮下浅层剖开,形成新的皮下组织瓣,并将其反折固定于下颏部。对于颈部挛缩畸形患者,重点行颈部轮廓成形术,方法为术中切除瘢痕组织和皮下脂肪,沿下颌角、下颌下腺与舌骨连线水平将挛缩的颈阔肌及其深部组织横断;必要时也可设计并切取颈阔肌组织瓣,将组织瓣向上翻转并固定于下颌缘。对部分挛缩严重患者,视情况可将挛缩的舌骨下肌群及其周边组织在舌骨-甲状软骨沟处部分切断松解,以加深颈颏角。术后常规佩戴弹力套塑形,以获得稳定的颏颈部美学形态。

    1.3.3   按整形要求设计切口

    包括隐藏手术切口和避免垂直方向直线切口。(1)隐藏手术切口:对于颏颈部严重瘢痕挛缩畸形患者,通常采用2个独立的扩张皮瓣分别修复颏部和颈部亚单位,将2个皮瓣在舌骨上方对接缝合,使缝合切口隐藏于颏下区;对于颈前区残留部分正常皮肤组织的患者,通常采用单纯局部扩张推进皮瓣或局部扩张推进皮瓣联合邻位扩张带蒂皮瓣修复,以避免颈前中央区遗留垂直方向手术切痕。对于颈部瘢痕上界接近或超过下颌缘的患者,若面部条件允许,常规采用面部局部扩张皮瓣覆盖下颌缘,并与修复颈部的扩张皮瓣对接缝合于下颌缘一线,以隐藏手术切口和增强下颌缘轮廓线。(2)避免垂直方向直线切口:将颈部垂直方向的手术切口常规设计成Z字形或鱼尾状,以避免直线切口术后挛缩。

    1.3.4   预防手术切口瘢痕

    对所有手术切口均采用整形美容皮下减张技术缝合。术后常规应用弹力套和硅酮贴行抗瘢痕治疗3~6个月。对于严重瘢痕体质患者,术后2周开始对手术切口行强脉冲光治疗(波长为560或590 nm,能量为13~18 J/cm2,每月1次,共3次)。

    记录扩张器的扩张倍数(计算平均值)、采用皮瓣类型、局部美学形态重构情况、术后切口外观与皮瓣成活情况及随访观察的供受区情况。

    34例患者埋置扩张器的平均扩张倍数为扩张器额定容量的3.82倍。3例患者采用单纯扩张局部带蒂皮瓣、19例患者采用单纯扩张肩胸部穿支带蒂皮瓣(涉及颈横动脉颈段皮支者7例、涉及锁骨上动脉穿支者3例、涉及胸廓内动脉第2肋间穿支者6例、涉及颈横动脉颈段皮支联合胸廓内动脉第2肋间穿支者3例)、10例患者采用扩张局部带蒂皮瓣联合扩张肩胸部穿支带蒂皮瓣(联合颈横动脉颈段皮支者6例、联合胸廓内动脉第2肋间穿支者3例、联合锁骨上动脉穿支者1例)、2例患者采用扩张局部带蒂皮瓣联合扩张胸廓内动脉第2肋间穿支游离皮瓣。瘢痕切除后,重构下唇形态和颏唇沟者10例、重构下颏突起和延长下颏长度者16例、重构颈颏角和下颌缘轮廓线者28例。手术切口较为隐蔽,多数位于颏部和颈部亚单位自然交界或转折处;颈部垂直方向切口呈Z字形或鱼尾状。34例患者术后皮瓣均成活,其中8例患者扩张皮瓣术后1~3 d出现远端边缘或尖端少许坏死,主要为扩张皮瓣远端回流障碍所致,换药后愈合。随访3~18个月,扩张皮瓣色泽、厚度与颏颈部皮肤差异小,颏颈部美学形态显著改善,手术切口瘢痕增生较轻。

    例1

    男,23岁,因煤气爆炸烧伤后面部瘢痕增生伴挛缩畸形8个月余入院。诊断:面部瘢痕增生伴挛缩畸形、小口畸形。体格检查:瘢痕分布于面部(面积约60 cm2),以下颏为主,瘢痕色红、质硬并且高出正常皮肤。下颏形态轮廓破坏、小口畸形、颏唇沟及下颏突起消失、下颏短小且退缩。入院后Ⅰ期于右侧肩部置入1个长方形扩张器(额定容量为300 mL),术后注射生理盐水3个月,将扩张器扩张至其额定容量的3.04倍,行Ⅱ期颏部亚单位瘢痕切除+右侧肩部扩张锁骨上动脉穿支皮瓣带蒂转移修复术、小口畸形矫正术。术中重构下唇缘、再造颏唇沟凹陷;以扩张皮瓣中央区(较薄部分)覆盖颏唇沟处创面,以扩张皮瓣近蒂部(较厚部分)增厚下颏突起。将供瓣区直接缝合。术后3周断蒂,断蒂时利用皮瓣蒂部组织适当延长下颏长度。手术切口位于颏部亚单位自然转折处。术后皮瓣成活。随访18个月,颏部亚单位轮廓和下唇形态好,小口畸形得以矫正,颏唇沟和下颏突起等美学特征显著改善。见图1

    1  采用右侧肩部扩张锁骨上动脉穿支皮瓣带蒂转移美学整复例1患者烧伤后下颏瘢痕挛缩畸形。1A、1B.分别为Ⅰ期术前正面和侧面观,显示下颏亚单位轮廓破坏、颏唇沟和下颏突起消失、下颏短小且退缩;1C.Ⅰ期术前小口畸形;1D.Ⅱ期术前,右侧肩部皮肤软组织扩张器置入术后3个月;1E.Ⅱ期颏部瘢痕切除、小口开大、颏唇沟再造、扩张锁骨上动脉穿支皮瓣带蒂修复术后即刻;1F.Ⅱ期术后3周断蒂术后即刻;1G、1H.分别为断蒂术后18个月正面和侧面观,下唇形态、下颏亚单位轮廓与局部美学特征良好;1I.断蒂术后18个月,小口畸形显著矫正

    例2

    女,31岁,因火焰烧伤后面颈部瘢痕增生伴挛缩畸形影响外观和功能17年入院。既往行颈部瘢痕松解+中厚皮移植术。入院诊断:面颈部瘢痕挛缩畸形伴功能障碍。体格检查:下颏和颈部大片挛缩瘢痕(面积约198 cm2),其间见挛缩皮片;伴有小口畸形、嘴角牵拉畸形、下唇外翻,颏唇沟、下颏突起、颈颏角和下颌缘轮廓线消失,颈部活动受限。入院后Ⅰ期行双侧面部、肩胸部扩张器置入术,其中左侧面部置入1个肾形、额定容量80 mL扩张器,右侧面部置入1个肾形、额定容量100 mL扩张器,左侧肩胸部置入1个长方形、额定容量350 mL扩张器,右侧肩胸部置入1个长方形、额定容量为400 mL扩张器,术后注射生理盐水5个月,分别将左侧面部、右侧面部、左侧肩胸部、右侧肩胸部扩张器扩张至其额定容量的3.68、3.85、3.73和3.91倍,行Ⅱ期颏颈部瘢痕切除与畸形矫正+面部、肩胸部扩张器取出+扩张皮瓣转移修复术。左侧以颈横动脉颈段皮支为蒂,切取扩张皮瓣修复下颏单元;右侧以锁骨上动脉穿支为蒂,切取扩张皮瓣修复颈部单元。将供瓣区直接缝合。推进面部扩张皮瓣覆盖下颌缘。术中行小口开大术,下唇缘重构、颏唇沟再造术;沿下颌角、下颌下腺与舌骨连线水平将挛缩的颈阔肌及其深部组织横断,重建颈颏角和下颌缘弧度。术后3周,行Ⅲ期左侧扩张颈横动脉颈段皮支皮瓣断蒂术和下颏成形术(延长下颏和再造下颏突起)。手术切口位于颏部和颈部亚单位自然交界或转折处,颈部垂直方向切口呈鱼尾状。术后皮瓣成活。随访5个月,颏颈部亚单位轮廓好,局部美学特征显著改善,颈部活动自如,手术切口瘢痕轻度增生。见图2

    2  采用扩张肩胸部穿支皮瓣带蒂转移美学整复例2患者烧伤后颏颈部瘢痕挛缩畸形。2A、2B、2C、2D、2E.分别为Ⅰ期术前右侧后仰、右侧平视、正面、左侧平视和左侧后仰观,显示颏颈亚单位轮廓破坏、美学特征消失;2F.Ⅱ期术前,扩张5个月后;2G.Ⅱ期颏颈部瘢痕切除、颏唇沟再造、颈部轮廓成形、扩张锁骨上动脉穿支皮瓣与扩张颈横动脉颈段皮支皮瓣带蒂修复术后即刻;2H.Ⅲ期皮瓣断蒂和下颏成形术后即刻;2I、2J、2K、2L、2M.分别为Ⅲ期术后5个月患者右侧后仰、右侧平视、正面、左侧平视和左侧后仰观,显示颏颈亚单位轮廓和美学特征显著改善

    如何在恢复功能的基础上获得更好的美学形态,一直是面颈部瘢痕挛缩畸形整复领域的重要问题。围绕这一问题,国内外学者进行了长期探索和实践。Gonzalez-Ulloa2最早提出面部亚单位概念与划分。Edgerton和Hansen3提出移植物供区选择的相似替代原则。Tsai等7总结了颈部瘢痕整复的系列方法,包括手术时机、挛缩松解程度、避免手术线性瘢痕、注意“动员”颈部正常皮肤以及重建颈颏角等。国内李青峰教授提出大面积面部软组织缺损修复的“MLT”原则[选择颜色质地匹配(match)、面积足够大(large)、厚度足够薄(thin)的组织进行修复],章一新教授、昝涛教授团队提出颈部瘢痕挛缩的重建新策略48, 9。然而,对于面颈部瘢痕挛缩畸形美学修复的定义和标准,目前未形成统一认识,手术效果仍多数依赖于医师的个人经验。本文作者认为,对于面颈部瘢痕挛缩畸形的美学修复,其定义和标准应以是否重构出符合或接近审美标准的亚单位局部美学特征为重要标志。

    对于如何重构出符合审美标准的颏颈部局部亚单位美学特征,除遵循既往相关原则外,本文作者认为其关键要点如下:(1)邻近皮瓣超量扩张。肩胸部的皮肤色泽与颏颈部非常匹配,是修复颏颈部瘢痕的理想供瓣区。该区域可切取锁骨上动脉穿支皮瓣、颈横动脉颈段皮支皮瓣和胸廓内动脉第2 肋间穿支皮瓣10, 11, 12。其中,锁骨上动脉穿支皮瓣和颈横动脉颈段皮支皮瓣的蒂部更邻近颏颈部,有利于皮瓣转移和修复更大面积的颏颈部瘢痕,是局部条件允许时修复颏颈部瘢痕的优选皮瓣13, 14, 15。在这方面,国内马显杰教授团队做了大量富有临床指导价值的工作。在本组采用肩胸部穿支皮瓣修复的病例中,约2/3的患者选用锁骨上动脉穿支皮瓣和颈横动脉颈段皮支皮瓣,进一步证实这2种皮瓣临床应用的可靠性。然而,肩胸部皮肤软组织的厚度显著厚于颈部皮肤软组织。本文作者观察到,行肩胸部皮肤软组织扩张时,若仅常规扩张至扩张器额定容量的2倍,扩张后的皮瓣仍显臃肿,而经3倍以上扩张后的皮瓣厚度则与受区较为匹配,尤其是当患者为女性时,扩张倍数宜增加至4~5倍。在本组病例中,所有患者肩胸部皮瓣扩张时的扩张倍数均超过3倍,少数患者达到5倍,从而使修复后的皮肤软组织与颏颈部正常组织厚度接近,提升了术后美观效果。(2)熟知审美标准。例如,口裂的宽度以两侧口角位于瞳孔垂直线上为标准,正常颏唇沟的深度标准约为4 mm,下颏突起的高度以下颏的突出点在鼻尖与唇珠连线的延长线上为宜,下颏长度占全脸长度的1/6~1/5,颈颏角以90~110°为宜,颏下线与胸锁乳突肌的夹角以90°为标准等。(3)再造美学特征。基于上述美学标准,术中切除瘢痕后行小口开大术、颏唇沟再造术、下颏成形术、颈部轮廓成形术等,重构出符合或接近审美标准的局部美学特征。例如,术中充分切除和松解下唇下方挛缩组织,重构颏唇沟,并选用扩张皮瓣最薄的部分覆盖,如此可获得良好的颏唇沟再造效果。对于颏部瘢痕畸形,则根据患者的具体情况行下颏成形术。对于下颏突起破坏的患者,术中以扩张皮瓣较厚部分覆盖下颏部以增厚下颏突起;对下颏过短伴下颏突起特征消失的患者,术中将修复下颏的带蒂皮瓣的蒂部剖开,形成皮肤蒂和皮下组织蒂,将皮下组织蒂适当修剪后反折缝合固定于下颏部,从而获得接近美学标准的下颏长度和下颏突起。对于颈部严重瘢痕畸形患者,以往主要强调颈颏角成形的重要性。然而,由于该类患者的颈颏角和下颌缘弧度往往同时受损,若仅仅再造颈颏角,术后颈部的美观效果则仍不够理想。本研究团队采用沿下颌角、下颌下腺与舌骨连线,将颈阔肌及其深部的挛缩组织予以横断,或横断后形成组织瓣整体向上翻转,反折固定于下颌缘的手术策略,不仅可以再造出清晰的颈颏角,而且能重构出良好的下颌缘弧度,从而增强术后颈部轮廓特征,获得更好的颈部美学形态。

    切口瘢痕是影响整形手术美学效果的共性问题。近年来,随着光电技术的发展,瘢痕的防治有了更多新的手段,但手术切口瘢痕仍难避免,隐藏手术切口对于提升整形术后美观效果仍具有十分重要的意义。对于颏颈部瘢痕整复手术而言,将手术切口设计在颏部和颈部亚单位的自然分界或转折处是隐藏手术切口的良好策略。对于颈部的广泛增生性瘢痕,尽量采用单一扩张皮瓣修复,避免皮瓣拼接产生新的手术切痕,尤其是垂直方向的手术切痕;同时,将皮瓣的上界设计于颏下区和下颌缘,下界于胸锁关节与锁骨,两侧至胸锁乳突肌后缘,如此,可获得较为理想的隐藏手术切口效果。对于颈前区部分受累的患者,优选单纯局部扩张推进皮瓣或局部扩张推进皮瓣联合邻位扩张带蒂皮瓣进行修复,使垂直方向手术切痕远离颈前中央区,避免患者着衬衣时手术切痕外露。为预防术后切口瘢痕挛缩,应常规将颈部垂直方向切口设计成Z字形或鱼尾状。此外,严重的颏颈部瘢痕挛缩畸形患者多为瘢痕体质,除采用良好的缝合技术以减轻切口瘢痕增生外,术后6个月内采取个性化的综合措施防治手术切口瘢痕对于提升术后美观效果同样十分重要,常用的方法包括光电治疗、涂抹抗瘢痕凝胶和压力治疗等16, 17, 18, 19

    综上,随着人们对瘢痕治疗美观要求的进一步提高,既往以功能重建为主要目的的颏颈部瘢痕畸形整复策略已难满足患者需求。本研究团队结合前人工作基础,提出基于“MRIS”原则的颏颈部瘢痕挛缩畸形美学整复新策略,其核心理念在于重构符合或接近审美标准的亚单位美学特征,以期为美学意义上的瘢痕整复治疗提供有益参考。

    ·读者·作者·编者·

    本刊可直接使用英文缩写的常用词汇

    已被公知公认的缩略语如ATP、CT、DNA、HBsAg、Ig、mRNA、PCR、RNA,可不加注释直接使用。对本刊常用的以下词汇,也允许在正文中图表以外处直接使用英文缩写(按首字母排序)。

    脱细胞真皮基质(ADM)重症监护病房(ICU)动脉血氧分压(PaO2
    丙氨酸转氨酶(ALT)白细胞介素(IL)磷酸盐缓冲液(PBS)
    急性呼吸窘迫综合征(ARDS)角质形成细胞(KC)反转录-聚合酶链反应(RT-PCR)
    天冬氨酸转氨酶(AST)半数致死烧伤面积(LA50)全身炎症反应综合征(SIRS)
    集落形成单位(CFU)内毒素/脂多糖(LPS)超氧化物歧化酶(SOD)
    细胞外基质(ECM)丝裂原活化蛋白激酶(MAPK)动脉血氧饱和度(SaO2
    表皮生长因子(EGF)最低抑菌浓度(MIC)体表总面积(TBSA)
    酶联免疫吸附测定(ELISA)多器官功能障碍综合征(MODS)转化生长因子(TGF)
    成纤维细胞(Fb)多器官功能衰竭(MOF)辅助性T淋巴细胞(Th)
    成纤维细胞生长因子(FGF)一氧化氮合酶(NOS)肿瘤坏死因子(TNF)
    3-磷酸甘油醛脱氢酶(GAPDH)负压伤口疗法(NPWT)血管内皮生长因子(VEGF)
    苏木精-伊红(HE)动脉血二氧化碳分压(PaCO2负压封闭引流(VSD)
    下载: 导出CSV 
    | 显示表格
  • [1]
    GradaA, Otero-VinasM, Prieto-CastrilloF, et al. Research techniques made simple: analysis of collective cell migration using the wound healing assay[J]. J Invest Dermatol, 2017, 137(2): e11-e16. DOI: 10.1016/j.jid.2016.11.020.
    [2]
    冀然,张泽,王文平,等.生物强度电场对人表皮细胞株 HaCaT和小鼠表皮细胞运动性及CD9表达的影响[J].中华烧伤杂志,2021,37(1):34-41.DOI: 10.3760/cma.j.cn501120-20200115-00023.
    [3]
    TaiG, TaiM, ZhaoM. Electrically stimulated cell migration and its contribution to wound healing[J/OL]. Burns Trauma, 2018, 6(1): 20[2022-10-23]. https://pubmed.ncbi.nlm.nih.gov/30003115/. DOI: 10.1186/s41038-018-0123-2.
    [4]
    王文平,冀然,张泽,等.生物强度电场对人皮肤成纤维细胞转化的调节作用[J].中华烧伤与创面修复杂志,2022,38(4):354-362.DOI: 10.3760/cma.j.cn501120-20210112-00017.
    [5]
    JiR,TengM,ZhangZ,et al.Electric field down-regulates CD9 to promote keratinocytes migration through AMPK pathway[J].Int J Med Sci,2020,17(7):865-873.DOI: 10.7150/ijms.42840.
    [6]
    LinBJ,TsaoSH,ChenA,et al.Lipid rafts sense and direct electric field-induced migration[J].Proc Natl Acad Sci U S A,2017,114(32):8568-8573.DOI: 10.1073/pnas.1702526114.
    [7]
    GarcinC,StraubeA.Microtubules in cell migration[J].Essays Biochem,2019,63(5):509-520.DOI: 10.1042/EBC20190016.
    [8]
    JankeC, MontagnacG. Causes and consequences of microtubule acetylation[J]. Curr Biol, 2017, 27(23):R1287-R1292. DOI: 10.1016/j.cub.2017.10.044.
    [9]
    MorelliG, EvenA, Gladwyn-NgI, et al. p27Kip1 modulates axonal transport by regulating α-tubulin acetyltransferase 1 stability[J]. Cell Rep, 2018, 23(8): 2429-2442. DOI: 10.1016/j.celrep.2018.04.083.
    [10]
    ChawanV, YevateS, GajbhiyeR, et al. Acetylation/deacetylation and microtubule associated proteins influence flagellar axonemal stability and sperm motility[J]. Biosci Rep, 2020, 40(12): BSR20202442. DOI: 10.1042/BSR20202442.
    [11]
    DeakinNO, TurnerCE. Paxillin inhibits HDAC6 to regulate microtubule acetylation, Golgi structure, and polarized migration[J]. J Cell Biol, 2014, 206(3): 395-413. DOI: 10.1083/jcb.201403039.
    [12]
    NuccitelliR. A role for endogenous electric fields in wound healing[J]. Curr Top Dev Biol, 2003, 58: 1-26. DOI: 10.1016/S0070-2153(03)58001-2.
    [13]
    CaiJ, ZhongY, TianS. Naturally occurring davanone terpenoid exhibits anticancer potential against ovarian cancer cells by inducing programmed cell death, by inducing caspase-dependent apoptosis, loss of mitochondrial membrane potential, inhibition of cell migration and invasion and targeting PI3K/AKT/MAPK signaling pathway[J]. J BUON, 2020, 25(5): 2301-2307.
    [14]
    GoodsonHV, JonassonEM. Microtubules and microtubule-associated proteins[J]. Cold Spring Harb Perspect Biol, 2018, 10(6): a022608. DOI: 10.1101/cshperspect.a022608.
    [15]
    LaFlammeSE, Mathew-SteinerS, SinghN, et al. Integrin and microtubule crosstalk in the regulation of cellular processes[J]. Cell Mol Life Sci, 2018, 75(22): 4177-4185. DOI: 10.1007/s00018-018-2913-x.
    [16]
    JankeC, MagieraMM. The tubulin code and its role in controlling microtubule properties and functions[J]. Nat Rev Mol Cell Biol, 2020, 21(6): 307-326. DOI: 10.1038/s41580-020-0214-3.
    [17]
    Roll-MecakA. The tubulin code in microtubule dynamics and information encoding[J]. Dev Cell, 2020, 54(1): 7-20. DOI: 10.1016/j.devcel.2020.06.008.
    [18]
    LiuN, XiongY, RenY, et al. Proteomic profiling and functional characterization of multiple post-translational modifications of tubulin[J]. J Proteome Res, 2015, 14(8): 3292-3304. DOI: 10.1021/acs.jproteome.5b00308.
    [19]
    XuZ, SchaedelL, PortranD, et al. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation[J]. Science, 2017, 356(6335): 328-332. DOI: 10.1126/science.aai8764.
    [20]
    Eshun-WilsonL, ZhangR, PortranD, et al. Effects of α-tubulin acetylation on microtubule structure and stability[J]. Proc Natl Acad Sci U S A, 2019, 116(21): 10366-10371. DOI: 10.1073/pnas.1900441116.
    [21]
    BanceB, SeetharamanS, LeducC, et al. Microtubule acetylation but not detyrosination promotes focal adhesion dynamics and astrocyte migration[J]. J Cell Sci, 2019, 132(7): jcs225805. DOI: 10.1242/jcs.225805.
    [22]
    AtkinsonSJ, GontarczykAM, AlghamdiAA, et al. The β3-integrin endothelial adhesome regulates microtubule-dependent cell migration[J]. EMBO Rep, 2018, 19(7): e44578. DOI: 10.15252/embr.201744578.
    [23]
    MyatMM, RashmiRN, MannaD, et al. Drosophila KASH-domain protein Klarsicht regulates microtubule stability and integrin receptor localization during collective cell migration[J]. Dev Biol, 2015, 407(1): 103-114. DOI: 10.1016/j.ydbio.2015.08.003.
    [24]
    Rampioni VinciguerraGL, CitronF, SegattoI, et al. p27kip1 at the crossroad between actin and microtubule dynamics[J]. Cell Div, 2019, 14(1): 2. DOI: 10.1186/s13008-019-0045-9.
    [25]
    ReedNA, CaiD, BlasiusTL, et al. Microtubule acetylation promotes kinesin-1 binding and transport[J]. Curr Biol, 2006, 16(21): 2166-2172. DOI: 10.1016/j.cub.2006.09.014.
    [26]
    Castro-CastroA, JankeC, MontagnacG, et al. ATAT1/MEC-17 acetyltransferase and HDAC6 deacetylase control a balance of acetylation of alpha-tubulin and cortactin and regulate MT1-MMP trafficking and breast tumor cell invasion[J]. Eur J Cell Biol, 2012, 91(11/12): 950-960. DOI: 10.1016/j.ejcb.2012.07.001.
    [27]
    van DijkJ, BompardG, CauJ, et al. Microtubule polyglutamylation and acetylation drive microtubule dynamics critical for platelet formation[J]. BMC Biol, 2018, 16(1): 116. DOI: 10.1186/s12915-018-0584-6.
    [28]
    ShiP, WangY, HuangY, et al. Arp2/3-branched actin regulates microtubule acetylation levels and affects mitochondrial distribution[J]. J Cell Sci, 2019, 132(6): jcs226506. DOI: 10.1242/jcs.226506.
    [29]
    HubbertC, GuardiolaA, ShaoR, et al. HDAC6 is a microtubule-associated deacetylase[J]. Nature, 2002, 417(6887): 455-458. DOI: 10.1038/417455a.
    [30]
    AdalbertR, KaiedaA, AntoniouC, et al. Novel HDAC6 inhibitors increase tubulin acetylation and rescue axonal transport of mitochondria in a model of charcot-marie-tooth type 2F[J]. ACS Chem Neurosci, 2020, 11(3): 258-267. DOI: 10.1021/acschemneuro.9b00338.
    [31]
    KershawS, MorganDJ, BoydJ, et al. Glucocorticoids rapidly inhibit cell migration through a novel, non-transcriptional HDAC6 pathway[J]. J Cell Sci, 2020, 133(11): jcs242842. DOI: 10.1242/jcs.242842.
    [32]
    Valenzuela-FernándezA, CabreroJR, SerradorJM, et al. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions[J]. Trends Cell Biol, 2008, 18(6): 291-297. DOI: 10.1016/j.tcb.2008.04.003.
    [33]
    KeB, ChenY, TuW, et al. Inhibition of HDAC6 activity in kidney diseases: a new perspective[J]. Mol Med, 2018, 24(1): 33. DOI: 10.1186/s10020-018-0027-4.
    [34]
    KalinskiAL, KarAN, CraverJ, et al. Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition[J]. J Cell Biol, 2019, 218(6): 1871-1890. DOI: 10.1083/jcb.201702187.
    [35]
    SeidelC, SchnekenburgerM, DicatoM, et al. Histone deacetylase 6 in health and disease[J]. Epigenomics, 2015, 7(1): 103-118. DOI: 10.2217/epi.14.69.
    [36]
    Shafaq-ZadahM, Gomes-SantosCS, BardinS, et al. Persistent cell migration and adhesion rely on retrograde transport of β1 integrin[J]. Nature Cell Biology, 2016, 18(1): 54-64. DOI: 10.1038/ncb3287.
    [37]
    RenX, SunH, LiuJ, et al. Keratinocyte electrotaxis induced by physiological pulsed direct current electric fields[J]. Bioelectrochemistry, 2019, 127: 113-124. DOI: 10.1016/j.bioelechem.2019.02.001.
  • Relative Articles

    [1]Li Yashu, He Weifeng, Lyu Kaiyang. Role and mechanism of Vγ4 T cell depletion in epidermal tissue repair after ultraviolet damage to mouse skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(5): 415-424. doi: 10.3760/cma.j.cn501225-20240121-00026
    [2]Tang Xiaoyu, Liu Chenyang, Chu Guoping, Li Xiaoxiao, Hu Kai, Zhao Peng, Lyu Guozhong. Effects of porcine urinary bladder matrix on motility and polarization of bone marrow-derived macrophages in mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(1): 25-34. doi: 10.3760/cma.j.cn501225-20220516-00187
    [3]Chen Wei, Xu Guangchao, Huang Zhonglu, Chen Li, Nie Kaiyu. Research advances on the mechanism of nerve regeneration-related protein in skin fibrosis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(5): 491-495. doi: 10.3760/cma.j.cn501225-20220701-00278
    [4]Sun Jiachen, Sun Tianjun, Shen Chuan'an, Zhao Hongqing, Liu Xinzhu, Zhang Yijie. Effects of collagen type ⅩⅦ α1 on epidermal stem cells in aging skin and the microRNA intervention mechanism[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(9): 839-848. doi: 10.3760/cma.j.cn501120-20210829-00293
    [5]Shi Zhiyuan, Zhang Bohan, Sun Jiachen, Liu Xinzhu, Shen Chuan'an. Research advances on the role and mechanism of epidermal stem cells in skin wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(9): 854-858. doi: 10.3760/cma.j.cn501120-20211109-00382
    [6]Wang Wenping, Ji Ran, Zhang Ze, Wu Yating, Zhang Hengshu, Zhang Qiong, Jiang Xupin, Teng Miao. Regulatory effects of bio-intensity electric field on transformation of human skin fibroblasts[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(4): 354-362. doi: 10.3760/cma.j.cn501120-20210112-00017
    [7]Zhang Junhui, Zhang Qiong, Jia Jiezhi, Li Hongmei, Zhang Can, Hu Jiongyu, Zhang Dongxia, Huang Yuesheng. Effects of B-cell lymphoma-2/adenovirus E1B 19 000 interacting protein 3 on the migration and motility of human dermal microvascular endothelial cells under hypoxia and the mechanism[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(1): 9-16. doi: 10.3760/cma.j.cn501120-20200927-00425
    [8]Zhang Can, Zhang Qiong, Zhang Junhui, Wang Fan, Zhang Jiaping. Effects and molecular mechanism of histone deacetylase 6 inhibitor Tubastatin A on the prolifera- tion and movement of human skin fibroblasts[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(9): 853-859. doi: 10.3760/cma.j.cn501120-20200519-00274
    [9]Ji Ran, Zhang Ze, Wang Wenping, Zhang Qiong, Lyu Yanling, Jiang Xupin, Teng Miao. Effects of bio-strength electric field on the motility and CD9 expression of human epidermal cell line HaCaT and mouse epidermal cells[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(1): 34-41. doi: 10.3760/cma.j.cn501120-20200115-00023
    [10]He Weifeng, Luo Gaoxing. Role of skin immunity on wound healing[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(10): 901-904. doi: 10.3760/cma.j.cn501120-20200823-00389
    [11]Liu Jie, Ren Xi, Guo Xiaowei, Sun Huanbo, Tang Yong, Luo Zhenghui, Zhang Qiong, Zhang Dongxia, Huang Yuesheng, Zhang Jiaping. Effects of direct current electric field on directional migration and arrangement of dermal fibroblasts in neonatal BALB/c mice and the mechanisms[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(4): 224-231. doi: 10.3760/cma.j.issn.1009-2587.2016.04.007
    [12]Li Yashu, He Weifeng, Wu Jun. Advances in the research of biological characters and pathophysiological effects of dendritic epidermal T lymphocytes[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(1): 58-61. doi: 10.3760/cma.j.issn.1009-2587.2016.01.018
    [13]Deng Xiang-dong, Chen Fu-xing, Liu Jun-quan, Zhou Zhong-hai, Jia Chi-yu. Expression of coxsackie-adenovirus receptor in keratinocytes of mouse skin after heat stimulation andthe effect of coxsackie-adenovirus receptor on dendritic epidermal T lymphocytes[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2014, 30(1): 40-45. doi: 10.3760/cma.j.issn.1009-2587.2014.01.011
    [14]Yan Tiantian, Zhang Dongxia, Jiang Xupin, Zhang Qiong, Huang Yuesheng. Effects of hypoxia of different duration on movement and proliferation of human epidermal cell lineHaCaT[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2014, 30(3): 231-236. doi: 10.3760/cma.j.issn.1009-2587.2014.03.012
    [15]JIANG Yan, WANG Xian-yuan, LUO Xiang-dong. Influence of histatin 1 on the proliferation and migration of HaCaT cells[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2012, 28(3): 207-212. doi: 10.3760/cma.j.issn.1009-2587.2012.03.014
    [16]ZHAN Ri-xing, SUN Wei, YAO Zhi-hui, CUI Yan-yan, YANC Si-si, TAN Jiang-lin, ZHOU Jun-yi, WANG Ying, YANG Jun-jie, ZHANG Xiao-rong, HU Xiao-hong, WU jun, LUO Gao-xing. Biologic effect of nitric oxide on human epidermal stem cells in vitro[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2012, 28(2): 125-129. doi: 10.3760/cma.j.issn.1009-2587.2012.02.012
    [17]DANG Yong-ming, FANG Ya-dong, HU Jiong-yu, ZHANG Jia-ping, SONG Hua-pei, ZHANG Yi-ming, ZHANG Qiong, HUANG Yue-sheng. Influence of microtubule depolymerization of myocardial cells on mitochondria distribution and ener- gy metabolism in adult rats[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2010, 26(1): 18-22. doi: 10.3760/cma.j.issn.1009-2587.2010.01.006
    [18]LIU Hu-xian, TIAN Xiao-chen, JIA Chi-yu, LU Xiao-jie, LI Gui-shui. Preliminary study on the phenomenon of epidermal stem cell ectopy in expanded skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2009, 25(6): 437-440. doi: 10.3760/cma.j.issn.1009-2587.2009.06.013
    [19]KUANG Yong, HUANG Yue-sheng. Study on injury to microtubule of cardiomyosites at early post-hypoxia stage[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2007, 23(3): 172-174.
    [20]ZHANG zhi, LIU Yan, ZHANG Xiong, XU Wei-shi. The content of decorin and its mRNA expression in normal human skin and hyperplastic scars[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2004, 20(2): 76-78.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (193) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return