Citation: | Zhu DZ,Yao B,Yan ZQ,et al.Research advances on the construction of an ideal scar model in vitro based on innovative tissue engineering technology[J].Chin J Burns Wounds,2022,38(10):983-988.DOI: 10.3760/cma.j.cn501120-20210723-00257. |
[1] |
RahimnejadM,DerakhshanfarS,ZhongW.Biomaterials and tissue engineering for scar management in wound care[J/OL].Burns Trauma,2017,5:4[2022-09-21].https://pubmed.ncbi.nlm.nih.gov/28127573/. DOI: 10.1186/s41038-017-0069-9.
|
[2] |
中国整形美容协会瘢痕医学分会. 瘢痕早期治疗全国专家共识(2020版) [J]. 中华烧伤杂志, 2021, 37(2):113-125. DOI: 10.3760/cma.j.cn501120-20200609-00300.
|
[3] |
SharmaJR,LebekoM,KidzeruEB,et al.In vitro and ex vivo models for functional testing of therapeutic anti-scarring drug targets in keloids[J].Adv Wound Care (New Rochelle),2019,8(12):655-670.DOI: 10.1089/wound.2019.1040.
|
[4] |
SeokJ,WarrenHS,CuencaAG,et al.Genomic responses in mouse models poorly mimic human inflammatory diseases[J].Proc Natl Acad Sci U S A,2013,110(9):3507-3512.DOI: 10.1073/pnas.1222878110.
|
[5] |
DiegelmannRF,CohenIK,McCoyBJ.Growth kinetics and collagen synthesis of normal skin, normal scar and keloid fibroblasts in vitro[J].J Cell Physiol,1979,98(2):341-346.DOI: 10.1002/jcp.1040980210.
|
[6] |
GarretaE,KammRD,Chuva de Sousa LopesSM,et al.Rethinking organoid technology through bioengineering[J].Nat Mater,2021,20(2):145-155.DOI: 10.1038/s41563-020-00804-4.
|
[7] |
BagabirR,SyedF,PausR,et al.Long-term organ culture of keloid disease tissue[J].Exp Dermatol,2012,21(5):376-381.DOI: 10.1111/j.1600-0625.2012.01476.x.
|
[8] |
KischerCW,PindurJ,ShetlarMR,et al.Implants of hypertrophic scars and keloids into the nude (athymic) mouse: viability and morphology[J].J Trauma,1989,29(5):672-677.DOI: 10.1097/00005373-198905000-00023.
|
[9] |
JacobF, SalinasRD, ZhangDY, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity[J]. Cell,2020,180(1):188-204.e22. DOI: 10.1016/j.cell.2019.11.036.
|
[10] |
SunW,StarlyB,DalyAC,et al.The bioprinting roadmap[J].Biofabrication,2020,12(2):022002.DOI: 10.1088/1758-5090/ab5158.
|
[11] |
BinderKW, ZhaoW, AboushwarebT, et al. In situ bioprinting of the skin for burns[J]. Journal of the American College of Surgeons, 2010, 211(3-supp-S):S76. DOI: 10.1016/j.jamcollsurg.2010.06.198.
|
[12] |
HuangS,YaoB,XieJ,et al.3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration[J].Acta Biomater,2016,32:170-177.DOI: 10.1016/j.actbio.2015.12.039.
|
[13] |
RimannM,BonoE,AnnaheimH,et al.Standardized 3D bioprinting of soft tissue models with human primary cells[J].J Lab Autom,2016,21(4):496-509.DOI: 10.1177/2211068214567146.
|
[14] |
KochL,DeiwickA,SchlieS,et al.Skin tissue generation by laser cell printing[J].Biotechnol Bioeng,2012,109(7):1855-1863.DOI: 10.1002/bit.24455.
|
[15] |
ZhouF,HongY,LiangR,et al.Rapid printing of bio-inspired 3D tissue constructs for skin regeneration[J].Biomaterials,2020,258:120287.DOI: 10.1016/j.biomaterials.2020.120287.
|
[16] |
KimBS,LeeJS,GaoG,et al.Direct 3D cell-printing of human skin with functional transwell system[J].Biofabrication,2017,9(2):025034.DOI: 10.1088/1758-5090/aa71c8.
|
[17] |
YaoB,HuT,CuiX,et al.Enzymatically degradable alginate/gelatin bioink promotes cellular behavior and degradation in vitro and in vivo[J].Biofabrication,2019,11(4):045020.DOI: 10.1088/1758-5090/ab38ef.
|
[18] |
LiJ,ZhangY,EnheJ,et al.Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness[J].Mater Sci Eng C Mater Biol Appl,2021,126:112193.DOI: 10.1016/j.msec.2021.112193.
|
[19] |
YaoB,WangR,WangY,et al.Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration[J].Sci Adv,2020,6(10):eaaz1094.DOI: 10.1126/sciadv.aaz1094.
|
[20] |
SinghNK,HanW,NamSA,et al.Three-dimensional cell-printing of advanced renal tubular tissue analogue[J].Biomaterials,2020,232:119734.DOI: 10.1016/j.biomaterials.2019.119734.
|
[21] |
KimBS,AhnM,ChoWW,et al.Engineering of diseased human skin equivalent using 3D cell printing for representing pathophysiological hallmarks of type 2 diabetes in vitro[J].Biomaterials,2021,272:120776.DOI: 10.1016/j.biomaterials.2021.120776.
|
[22] |
YaoB, ZhuDZ, CuiXL, et al.Modeling human hypertrophic scars with 3D preformed cellular aggregates bioprinting[J].Bioact Mater,2022,10:247-254.DOI: 10.1016/j.bioactmat.2021.09.004.
|
[23] |
PeddeRD,MiraniB,NavaeiA,et al.Emerging biofabrication strategies for engineering complex tissue constructs[J].Adv Mater,2017,29(19). DOI: 10.1002/adma.201606061.
|
[24] |
BhatiaSN,IngberDE.Microfluidic organs-on-chips[J].Nat Biotechnol,2014,32(8):760-772.DOI: 10.1038/nbt.2989.
|
[25] |
AtaçB,WagnerI,HorlandR,et al.Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion[J].Lab Chip,2013,13(18):3555-3561.DOI: 10.1039/c3lc50227a.
|
[26] |
MoriN,MorimotoY,TakeuchiS.Skin integrated with perfusable vascular channels on a chip[J].Biomaterials,2017,116:48-56.DOI: 10.1016/j.biomaterials.2016.11.031.
|
[27] |
AbaciHE,GledhillK,GuoZ,et al.Pumpless microfluidic platform for drug testing on human skin equivalents[J].Lab Chip,2015,15(3):882-888.DOI: 10.1039/c4lc00999a.
|
[28] |
MomeniF, SeyedM, XunL, et al. A review of 4D printing[J]. Materials & design, 2017, 122:42-79. DOI: 10.1016/j.matdes.2017.02.068.
|
[29] |
ChuH,YangW,SunL,et al.4D printing: a review on recent progresses[J].Micromachines (Basel),2020,11(9):796.DOI: 10.3390/mi11090796.
|
[30] |
王蕴璋, 苏晨, 付思祺, 等. 瘢痕疙瘩中的成纤维细胞特性研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(6):590-594. DOI: 10.3760/cma.j.cn501120-20210510-00176.
|
[31] |
BuechlerMB,PradhanRN,KrishnamurtyAT,et al.Cross-tissue organization of the fibroblast lineage[J].Nature,2021,593(7860):575-579.DOI: 10.1038/s41586-021-03549-5.
|
[32] |
MascharakS,desJardins-ParkHE,DavittMF,et al.Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring[J].Science,2021,372(6540):eaba2374.DOI: 10.1126/science.aba2374.
|
[33] |
WangZC,ZhaoWY,CaoY,et al.The roles of inflammation in keloid and hypertrophic scars[J].Front Immunol,2020,11:603187.DOI: 10.3389/fimmu.2020.603187.
|
[34] |
ShookBA,WaskoRR,Rivera-GonzalezGC,et al.Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair[J].Science,2018,362(6417):eaar2971.DOI: 10.1126/science.aar2971.
|
[35] |
ChenCZ,RaghunathM.Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis state of the art[J].Fibrogenesis Tissue Repair,2009,2:7.DOI: 10.1186/1755-1536-2-7.
|
[36] |
VeithAP,HendersonK,SpencerA,et al.Therapeutic strategies for enhancing angiogenesis in wound healing[J].Adv Drug Deliv Rev,2019,146:97-125.DOI: 10.1016/j.addr.2018.09.010.
|
[37] |
KorntnerS,LehnerC,GehwolfR,et al.Limiting angiogenesis to modulate scar formation[J].Adv Drug Deliv Rev,2019,146:170-189.DOI: 10.1016/j.addr.2018.02.010.
|
[38] |
HsuCK,LinHH,HarnHI,et al.Mechanical forces in skin disorders[J].J Dermatol Sci,2018,90(3):232-240.DOI: 10.1016/j.jdermsci.2018.03.004.
|
[39] |
GeorgesPC,HuiJJ,GombosZ,et al.Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis[J].Am J Physiol Gastrointest Liver Physiol,2007,293(6):G1147-1154.DOI: 10.1152/ajpgi.00032.2007.
|
[40] |
Viji BabuPK,RiannaC,BelgeG,et al.Mechanical and migratory properties of normal, scar, and Dupuytren's fibroblasts[J].J Mol Recognit,2018,31(9):e2719.DOI: 10.1002/jmr.2719.
|
[41] |
SantosA,LagaresD.Matrix stiffness: the conductor of organ fibrosis[J].Curr Rheumatol Rep,2018,20(1):2.DOI: 10.1007/s11926-018-0710-z.
|
[42] |
ZhuY,CaoY,PanJ,et al.Macro-alignment of electrospun fibers for vascular tissue engineering[J].J Biomed Mater Res B Appl Biomater,2010,92(2):508-516.DOI: 10.1002/jbm.b.31544.
|
[43] |
SeoBR,ChenX,LingL,et al.Collagen microarchitecture mechanically controls myofibroblast differentiation[J].Proc Natl Acad Sci U S A,2020,117(21):11387-11398.DOI: 10.1073/pnas.1919394117.
|
[44] |
BermanB.Biological agents for controlling excessive scarring[J].Am J Clin Dermatol,2010,11 Suppl 1:S31-34.DOI: 10.2165/1153419-S0-000000000-00000.
|
[45] |
SylakowskiK,WellsA.ECM-regulation of autophagy: the yin and the yang of autophagy during wound healing[J].Matrix Biol,2021,100-101:197-206.DOI: 10.1016/j.matbio.2020.12.006.
|
[46] |
McCormackA,HighleyCB,LeslieNR,et al.3D printing in suspension baths: keeping the promises of bioprinting afloat[J].Trends Biotechnol,2020,38(6):584-593.DOI: 10.1016/j.tibtech.2019.12.020.
|
[47] |
RamezaniH, ZhouLY, ShaoL, et al. Coaxial 3D bioprinting of organ prototyps from nutrients delivery to vascularization[J]. J Zhejiang Univ Sci A, 2020,21:859-875. DOI: 10.1631/jzus.A2000261.
|