Volume 38 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
Zhu DZ,Yao B,Yan ZQ,et al.Research advances on the construction of an ideal scar model in vitro based on innovative tissue engineering technology[J].Chin J Burns Wounds,2022,38(10):983-988.DOI: 10.3760/cma.j.cn501120-20210723-00257.
Citation: Zhu DZ,Yao B,Yan ZQ,et al.Research advances on the construction of an ideal scar model in vitro based on innovative tissue engineering technology[J].Chin J Burns Wounds,2022,38(10):983-988.DOI: 10.3760/cma.j.cn501120-20210723-00257.

Research advances on the construction of an ideal scar model in vitro based on innovative tissue engineering technology

doi: 10.3760/cma.j.cn501120-20210723-00257
Funds:

National Key Research and Development Program of China 2017YFC1103303

Youth Science Foundation of National Natural Science Foundation of China 32000969

Shanghai Wang Zhengguo Foundation for Traumatic Medicine Growth Factor Rejuvenation Plan SZYZ-TR-03

More Information
  • Corresponding author: Huang Sha, Email: stellarahuang@sina.com
  • Received Date: 2021-07-23
    Available Online: 2022-10-24
  • The scar brings a huge economic burden and creates a serious psychological shadow for patients. Although the current methods for scar treatment tend to be diversified, the treatment method that can truly achieve the goal of "perfect healing" or "scarless healing" after human skin injury is quite scarce. With the wide application of tissue engineering technologies in medicine research, technologies such as three-dimensional bioprinting, organoid culture, and organ chip technologies are constantly emerging. Disease models in vitro based on these innovative technologies showed more advantages than traditional animal disease models. The article introduces the current hotspot technologies in skin tissue engineering such as organoid culture, three-dimensional bioprinting, and organ chip technologies, focuses on summarizing the three key elements to be mastered for constructing an ideal scar model in vitro, and puts forward the future prospect of constructing an ideal scar model in vitro based on our research team's long-term experience in skin tissue repair and regeneration research.

     

  • loading
  • [1]
    RahimnejadM,DerakhshanfarS,ZhongW.Biomaterials and tissue engineering for scar management in wound care[J/OL].Burns Trauma,2017,5:4[2022-09-21].https://pubmed.ncbi.nlm.nih.gov/28127573/. DOI: 10.1186/s41038-017-0069-9.
    [2]
    中国整形美容协会瘢痕医学分会. 瘢痕早期治疗全国专家共识(2020版) [J]. 中华烧伤杂志, 2021, 37(2):113-125. DOI: 10.3760/cma.j.cn501120-20200609-00300.
    [3]
    SharmaJR,LebekoM,KidzeruEB,et al.In vitro and ex vivo models for functional testing of therapeutic anti-scarring drug targets in keloids[J].Adv Wound Care (New Rochelle),2019,8(12):655-670.DOI: 10.1089/wound.2019.1040.
    [4]
    SeokJ,WarrenHS,CuencaAG,et al.Genomic responses in mouse models poorly mimic human inflammatory diseases[J].Proc Natl Acad Sci U S A,2013,110(9):3507-3512.DOI: 10.1073/pnas.1222878110.
    [5]
    DiegelmannRF,CohenIK,McCoyBJ.Growth kinetics and collagen synthesis of normal skin, normal scar and keloid fibroblasts in vitro[J].J Cell Physiol,1979,98(2):341-346.DOI: 10.1002/jcp.1040980210.
    [6]
    GarretaE,KammRD,Chuva de Sousa LopesSM,et al.Rethinking organoid technology through bioengineering[J].Nat Mater,2021,20(2):145-155.DOI: 10.1038/s41563-020-00804-4.
    [7]
    BagabirR,SyedF,PausR,et al.Long-term organ culture of keloid disease tissue[J].Exp Dermatol,2012,21(5):376-381.DOI: 10.1111/j.1600-0625.2012.01476.x.
    [8]
    KischerCW,PindurJ,ShetlarMR,et al.Implants of hypertrophic scars and keloids into the nude (athymic) mouse: viability and morphology[J].J Trauma,1989,29(5):672-677.DOI: 10.1097/00005373-198905000-00023.
    [9]
    JacobF, SalinasRD, ZhangDY, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity[J]. Cell,2020,180(1):188-204.e22. DOI: 10.1016/j.cell.2019.11.036.
    [10]
    SunW,StarlyB,DalyAC,et al.The bioprinting roadmap[J].Biofabrication,2020,12(2):022002.DOI: 10.1088/1758-5090/ab5158.
    [11]
    BinderKW, ZhaoW, AboushwarebT, et al. In situ bioprinting of the skin for burns[J]. Journal of the American College of Surgeons, 2010, 211(3-supp-S):S76. DOI: 10.1016/j.jamcollsurg.2010.06.198.
    [12]
    HuangS,YaoB,XieJ,et al.3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration[J].Acta Biomater,2016,32:170-177.DOI: 10.1016/j.actbio.2015.12.039.
    [13]
    RimannM,BonoE,AnnaheimH,et al.Standardized 3D bioprinting of soft tissue models with human primary cells[J].J Lab Autom,2016,21(4):496-509.DOI: 10.1177/2211068214567146.
    [14]
    KochL,DeiwickA,SchlieS,et al.Skin tissue generation by laser cell printing[J].Biotechnol Bioeng,2012,109(7):1855-1863.DOI: 10.1002/bit.24455.
    [15]
    ZhouF,HongY,LiangR,et al.Rapid printing of bio-inspired 3D tissue constructs for skin regeneration[J].Biomaterials,2020,258:120287.DOI: 10.1016/j.biomaterials.2020.120287.
    [16]
    KimBS,LeeJS,GaoG,et al.Direct 3D cell-printing of human skin with functional transwell system[J].Biofabrication,2017,9(2):025034.DOI: 10.1088/1758-5090/aa71c8.
    [17]
    YaoB,HuT,CuiX,et al.Enzymatically degradable alginate/gelatin bioink promotes cellular behavior and degradation in vitro and in vivo[J].Biofabrication,2019,11(4):045020.DOI: 10.1088/1758-5090/ab38ef.
    [18]
    LiJ,ZhangY,EnheJ,et al.Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness[J].Mater Sci Eng C Mater Biol Appl,2021,126:112193.DOI: 10.1016/j.msec.2021.112193.
    [19]
    YaoB,WangR,WangY,et al.Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration[J].Sci Adv,2020,6(10):eaaz1094.DOI: 10.1126/sciadv.aaz1094.
    [20]
    SinghNK,HanW,NamSA,et al.Three-dimensional cell-printing of advanced renal tubular tissue analogue[J].Biomaterials,2020,232:119734.DOI: 10.1016/j.biomaterials.2019.119734.
    [21]
    KimBS,AhnM,ChoWW,et al.Engineering of diseased human skin equivalent using 3D cell printing for representing pathophysiological hallmarks of type 2 diabetes in vitro[J].Biomaterials,2021,272:120776.DOI: 10.1016/j.biomaterials.2021.120776.
    [22]
    YaoB, ZhuDZ, CuiXL, et al.Modeling human hypertrophic scars with 3D preformed cellular aggregates bioprinting[J].Bioact Mater,2022,10:247-254.DOI: 10.1016/j.bioactmat.2021.09.004.
    [23]
    PeddeRD,MiraniB,NavaeiA,et al.Emerging biofabrication strategies for engineering complex tissue constructs[J].Adv Mater,2017,29(19). DOI: 10.1002/adma.201606061.
    [24]
    BhatiaSN,IngberDE.Microfluidic organs-on-chips[J].Nat Biotechnol,2014,32(8):760-772.DOI: 10.1038/nbt.2989.
    [25]
    AtaçB,WagnerI,HorlandR,et al.Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion[J].Lab Chip,2013,13(18):3555-3561.DOI: 10.1039/c3lc50227a.
    [26]
    MoriN,MorimotoY,TakeuchiS.Skin integrated with perfusable vascular channels on a chip[J].Biomaterials,2017,116:48-56.DOI: 10.1016/j.biomaterials.2016.11.031.
    [27]
    AbaciHE,GledhillK,GuoZ,et al.Pumpless microfluidic platform for drug testing on human skin equivalents[J].Lab Chip,2015,15(3):882-888.DOI: 10.1039/c4lc00999a.
    [28]
    MomeniF, SeyedM, XunL, et al. A review of 4D printing[J]. Materials & design, 2017, 122:42-79. DOI: 10.1016/j.matdes.2017.02.068.
    [29]
    ChuH,YangW,SunL,et al.4D printing: a review on recent progresses[J].Micromachines (Basel),2020,11(9):796.DOI: 10.3390/mi11090796.
    [30]
    王蕴璋, 苏晨, 付思祺, 等. 瘢痕疙瘩中的成纤维细胞特性研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(6):590-594. DOI: 10.3760/cma.j.cn501120-20210510-00176.
    [31]
    BuechlerMB,PradhanRN,KrishnamurtyAT,et al.Cross-tissue organization of the fibroblast lineage[J].Nature,2021,593(7860):575-579.DOI: 10.1038/s41586-021-03549-5.
    [32]
    MascharakS,desJardins-ParkHE,DavittMF,et al.Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring[J].Science,2021,372(6540):eaba2374.DOI: 10.1126/science.aba2374.
    [33]
    WangZC,ZhaoWY,CaoY,et al.The roles of inflammation in keloid and hypertrophic scars[J].Front Immunol,2020,11:603187.DOI: 10.3389/fimmu.2020.603187.
    [34]
    ShookBA,WaskoRR,Rivera-GonzalezGC,et al.Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair[J].Science,2018,362(6417):eaar2971.DOI: 10.1126/science.aar2971.
    [35]
    ChenCZ,RaghunathM.Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis state of the art[J].Fibrogenesis Tissue Repair,2009,2:7.DOI: 10.1186/1755-1536-2-7.
    [36]
    VeithAP,HendersonK,SpencerA,et al.Therapeutic strategies for enhancing angiogenesis in wound healing[J].Adv Drug Deliv Rev,2019,146:97-125.DOI: 10.1016/j.addr.2018.09.010.
    [37]
    KorntnerS,LehnerC,GehwolfR,et al.Limiting angiogenesis to modulate scar formation[J].Adv Drug Deliv Rev,2019,146:170-189.DOI: 10.1016/j.addr.2018.02.010.
    [38]
    HsuCK,LinHH,HarnHI,et al.Mechanical forces in skin disorders[J].J Dermatol Sci,2018,90(3):232-240.DOI: 10.1016/j.jdermsci.2018.03.004.
    [39]
    GeorgesPC,HuiJJ,GombosZ,et al.Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis[J].Am J Physiol Gastrointest Liver Physiol,2007,293(6):G1147-1154.DOI: 10.1152/ajpgi.00032.2007.
    [40]
    Viji BabuPK,RiannaC,BelgeG,et al.Mechanical and migratory properties of normal, scar, and Dupuytren's fibroblasts[J].J Mol Recognit,2018,31(9):e2719.DOI: 10.1002/jmr.2719.
    [41]
    SantosA,LagaresD.Matrix stiffness: the conductor of organ fibrosis[J].Curr Rheumatol Rep,2018,20(1):2.DOI: 10.1007/s11926-018-0710-z.
    [42]
    ZhuY,CaoY,PanJ,et al.Macro-alignment of electrospun fibers for vascular tissue engineering[J].J Biomed Mater Res B Appl Biomater,2010,92(2):508-516.DOI: 10.1002/jbm.b.31544.
    [43]
    SeoBR,ChenX,LingL,et al.Collagen microarchitecture mechanically controls myofibroblast differentiation[J].Proc Natl Acad Sci U S A,2020,117(21):11387-11398.DOI: 10.1073/pnas.1919394117.
    [44]
    BermanB.Biological agents for controlling excessive scarring[J].Am J Clin Dermatol,2010,11 Suppl 1:S31-34.DOI: 10.2165/1153419-S0-000000000-00000.
    [45]
    SylakowskiK,WellsA.ECM-regulation of autophagy: the yin and the yang of autophagy during wound healing[J].Matrix Biol,2021,100-101:197-206.DOI: 10.1016/j.matbio.2020.12.006.
    [46]
    McCormackA,HighleyCB,LeslieNR,et al.3D printing in suspension baths: keeping the promises of bioprinting afloat[J].Trends Biotechnol,2020,38(6):584-593.DOI: 10.1016/j.tibtech.2019.12.020.
    [47]
    RamezaniH, ZhouLY, ShaoL, et al. Coaxial 3D bioprinting of organ prototyps from nutrients delivery to vascularization[J]. J Zhejiang Univ Sci A, 2020,21:859-875. DOI: 10.1631/jzus.A2000261.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (328) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return