Jiang Yong, Wang Kang'an, Wang Baoli, et al. Epidemiological characteristics and outcome analysis of 266 patients with inhalation injuries combined with total burn area less than 30% total body surface area[J]. Chin j Burns, 2021, 37(4): 340-349. DOI: 10.3760/cma.j.cn501120-20200229-00106
Citation: Zhu DZ,Yao B,Yan ZQ,et al.Research advances on the construction of an ideal scar model in vitro based on innovative tissue engineering technology[J].Chin J Burns Wounds,2022,38(10):983-988.DOI: 10.3760/cma.j.cn501120-20210723-00257.

Research advances on the construction of an ideal scar model in vitro based on innovative tissue engineering technology

doi: 10.3760/cma.j.cn501120-20210723-00257
Funds:

National Key Research and Development Program of China 2017YFC1103303

Youth Science Foundation of National Natural Science Foundation of China 32000969

Shanghai Wang Zhengguo Foundation for Traumatic Medicine Growth Factor Rejuvenation Plan SZYZ-TR-03

More Information
  • Corresponding author: Huang Sha, Email: stellarahuang@sina.com
  • Received Date: 2021-07-23
    Available Online: 2022-10-24
  • The scar brings a huge economic burden and creates a serious psychological shadow for patients. Although the current methods for scar treatment tend to be diversified, the treatment method that can truly achieve the goal of "perfect healing" or "scarless healing" after human skin injury is quite scarce. With the wide application of tissue engineering technologies in medicine research, technologies such as three-dimensional bioprinting, organoid culture, and organ chip technologies are constantly emerging. Disease models in vitro based on these innovative technologies showed more advantages than traditional animal disease models. The article introduces the current hotspot technologies in skin tissue engineering such as organoid culture, three-dimensional bioprinting, and organ chip technologies, focuses on summarizing the three key elements to be mastered for constructing an ideal scar model in vitro, and puts forward the future prospect of constructing an ideal scar model in vitro based on our research team's long-term experience in skin tissue repair and regeneration research.

     

  • [1]
    RahimnejadM,DerakhshanfarS,ZhongW.Biomaterials and tissue engineering for scar management in wound care[J/OL].Burns Trauma,2017,5:4[2022-09-21].https://pubmed.ncbi.nlm.nih.gov/28127573/. DOI: 10.1186/s41038-017-0069-9.
    [2]
    中国整形美容协会瘢痕医学分会. 瘢痕早期治疗全国专家共识(2020版) [J]. 中华烧伤杂志, 2021, 37(2):113-125. DOI: 10.3760/cma.j.cn501120-20200609-00300.
    [3]
    SharmaJR,LebekoM,KidzeruEB,et al.In vitro and ex vivo models for functional testing of therapeutic anti-scarring drug targets in keloids[J].Adv Wound Care (New Rochelle),2019,8(12):655-670.DOI: 10.1089/wound.2019.1040.
    [4]
    SeokJ,WarrenHS,CuencaAG,et al.Genomic responses in mouse models poorly mimic human inflammatory diseases[J].Proc Natl Acad Sci U S A,2013,110(9):3507-3512.DOI: 10.1073/pnas.1222878110.
    [5]
    DiegelmannRF,CohenIK,McCoyBJ.Growth kinetics and collagen synthesis of normal skin, normal scar and keloid fibroblasts in vitro[J].J Cell Physiol,1979,98(2):341-346.DOI: 10.1002/jcp.1040980210.
    [6]
    GarretaE,KammRD,Chuva de Sousa LopesSM,et al.Rethinking organoid technology through bioengineering[J].Nat Mater,2021,20(2):145-155.DOI: 10.1038/s41563-020-00804-4.
    [7]
    BagabirR,SyedF,PausR,et al.Long-term organ culture of keloid disease tissue[J].Exp Dermatol,2012,21(5):376-381.DOI: 10.1111/j.1600-0625.2012.01476.x.
    [8]
    KischerCW,PindurJ,ShetlarMR,et al.Implants of hypertrophic scars and keloids into the nude (athymic) mouse: viability and morphology[J].J Trauma,1989,29(5):672-677.DOI: 10.1097/00005373-198905000-00023.
    [9]
    JacobF, SalinasRD, ZhangDY, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity[J]. Cell,2020,180(1):188-204.e22. DOI: 10.1016/j.cell.2019.11.036.
    [10]
    SunW,StarlyB,DalyAC,et al.The bioprinting roadmap[J].Biofabrication,2020,12(2):022002.DOI: 10.1088/1758-5090/ab5158.
    [11]
    BinderKW, ZhaoW, AboushwarebT, et al. In situ bioprinting of the skin for burns[J]. Journal of the American College of Surgeons, 2010, 211(3-supp-S):S76. DOI: 10.1016/j.jamcollsurg.2010.06.198.
    [12]
    HuangS,YaoB,XieJ,et al.3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration[J].Acta Biomater,2016,32:170-177.DOI: 10.1016/j.actbio.2015.12.039.
    [13]
    RimannM,BonoE,AnnaheimH,et al.Standardized 3D bioprinting of soft tissue models with human primary cells[J].J Lab Autom,2016,21(4):496-509.DOI: 10.1177/2211068214567146.
    [14]
    KochL,DeiwickA,SchlieS,et al.Skin tissue generation by laser cell printing[J].Biotechnol Bioeng,2012,109(7):1855-1863.DOI: 10.1002/bit.24455.
    [15]
    ZhouF,HongY,LiangR,et al.Rapid printing of bio-inspired 3D tissue constructs for skin regeneration[J].Biomaterials,2020,258:120287.DOI: 10.1016/j.biomaterials.2020.120287.
    [16]
    KimBS,LeeJS,GaoG,et al.Direct 3D cell-printing of human skin with functional transwell system[J].Biofabrication,2017,9(2):025034.DOI: 10.1088/1758-5090/aa71c8.
    [17]
    YaoB,HuT,CuiX,et al.Enzymatically degradable alginate/gelatin bioink promotes cellular behavior and degradation in vitro and in vivo[J].Biofabrication,2019,11(4):045020.DOI: 10.1088/1758-5090/ab38ef.
    [18]
    LiJ,ZhangY,EnheJ,et al.Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness[J].Mater Sci Eng C Mater Biol Appl,2021,126:112193.DOI: 10.1016/j.msec.2021.112193.
    [19]
    YaoB,WangR,WangY,et al.Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration[J].Sci Adv,2020,6(10):eaaz1094.DOI: 10.1126/sciadv.aaz1094.
    [20]
    SinghNK,HanW,NamSA,et al.Three-dimensional cell-printing of advanced renal tubular tissue analogue[J].Biomaterials,2020,232:119734.DOI: 10.1016/j.biomaterials.2019.119734.
    [21]
    KimBS,AhnM,ChoWW,et al.Engineering of diseased human skin equivalent using 3D cell printing for representing pathophysiological hallmarks of type 2 diabetes in vitro[J].Biomaterials,2021,272:120776.DOI: 10.1016/j.biomaterials.2021.120776.
    [22]
    YaoB, ZhuDZ, CuiXL, et al.Modeling human hypertrophic scars with 3D preformed cellular aggregates bioprinting[J].Bioact Mater,2022,10:247-254.DOI: 10.1016/j.bioactmat.2021.09.004.
    [23]
    PeddeRD,MiraniB,NavaeiA,et al.Emerging biofabrication strategies for engineering complex tissue constructs[J].Adv Mater,2017,29(19). DOI: 10.1002/adma.201606061.
    [24]
    BhatiaSN,IngberDE.Microfluidic organs-on-chips[J].Nat Biotechnol,2014,32(8):760-772.DOI: 10.1038/nbt.2989.
    [25]
    AtaçB,WagnerI,HorlandR,et al.Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion[J].Lab Chip,2013,13(18):3555-3561.DOI: 10.1039/c3lc50227a.
    [26]
    MoriN,MorimotoY,TakeuchiS.Skin integrated with perfusable vascular channels on a chip[J].Biomaterials,2017,116:48-56.DOI: 10.1016/j.biomaterials.2016.11.031.
    [27]
    AbaciHE,GledhillK,GuoZ,et al.Pumpless microfluidic platform for drug testing on human skin equivalents[J].Lab Chip,2015,15(3):882-888.DOI: 10.1039/c4lc00999a.
    [28]
    MomeniF, SeyedM, XunL, et al. A review of 4D printing[J]. Materials & design, 2017, 122:42-79. DOI: 10.1016/j.matdes.2017.02.068.
    [29]
    ChuH,YangW,SunL,et al.4D printing: a review on recent progresses[J].Micromachines (Basel),2020,11(9):796.DOI: 10.3390/mi11090796.
    [30]
    王蕴璋, 苏晨, 付思祺, 等. 瘢痕疙瘩中的成纤维细胞特性研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(6):590-594. DOI: 10.3760/cma.j.cn501120-20210510-00176.
    [31]
    BuechlerMB,PradhanRN,KrishnamurtyAT,et al.Cross-tissue organization of the fibroblast lineage[J].Nature,2021,593(7860):575-579.DOI: 10.1038/s41586-021-03549-5.
    [32]
    MascharakS,desJardins-ParkHE,DavittMF,et al.Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring[J].Science,2021,372(6540):eaba2374.DOI: 10.1126/science.aba2374.
    [33]
    WangZC,ZhaoWY,CaoY,et al.The roles of inflammation in keloid and hypertrophic scars[J].Front Immunol,2020,11:603187.DOI: 10.3389/fimmu.2020.603187.
    [34]
    ShookBA,WaskoRR,Rivera-GonzalezGC,et al.Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair[J].Science,2018,362(6417):eaar2971.DOI: 10.1126/science.aar2971.
    [35]
    ChenCZ,RaghunathM.Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis state of the art[J].Fibrogenesis Tissue Repair,2009,2:7.DOI: 10.1186/1755-1536-2-7.
    [36]
    VeithAP,HendersonK,SpencerA,et al.Therapeutic strategies for enhancing angiogenesis in wound healing[J].Adv Drug Deliv Rev,2019,146:97-125.DOI: 10.1016/j.addr.2018.09.010.
    [37]
    KorntnerS,LehnerC,GehwolfR,et al.Limiting angiogenesis to modulate scar formation[J].Adv Drug Deliv Rev,2019,146:170-189.DOI: 10.1016/j.addr.2018.02.010.
    [38]
    HsuCK,LinHH,HarnHI,et al.Mechanical forces in skin disorders[J].J Dermatol Sci,2018,90(3):232-240.DOI: 10.1016/j.jdermsci.2018.03.004.
    [39]
    GeorgesPC,HuiJJ,GombosZ,et al.Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis[J].Am J Physiol Gastrointest Liver Physiol,2007,293(6):G1147-1154.DOI: 10.1152/ajpgi.00032.2007.
    [40]
    Viji BabuPK,RiannaC,BelgeG,et al.Mechanical and migratory properties of normal, scar, and Dupuytren's fibroblasts[J].J Mol Recognit,2018,31(9):e2719.DOI: 10.1002/jmr.2719.
    [41]
    SantosA,LagaresD.Matrix stiffness: the conductor of organ fibrosis[J].Curr Rheumatol Rep,2018,20(1):2.DOI: 10.1007/s11926-018-0710-z.
    [42]
    ZhuY,CaoY,PanJ,et al.Macro-alignment of electrospun fibers for vascular tissue engineering[J].J Biomed Mater Res B Appl Biomater,2010,92(2):508-516.DOI: 10.1002/jbm.b.31544.
    [43]
    SeoBR,ChenX,LingL,et al.Collagen microarchitecture mechanically controls myofibroblast differentiation[J].Proc Natl Acad Sci U S A,2020,117(21):11387-11398.DOI: 10.1073/pnas.1919394117.
    [44]
    BermanB.Biological agents for controlling excessive scarring[J].Am J Clin Dermatol,2010,11 Suppl 1:S31-34.DOI: 10.2165/1153419-S0-000000000-00000.
    [45]
    SylakowskiK,WellsA.ECM-regulation of autophagy: the yin and the yang of autophagy during wound healing[J].Matrix Biol,2021,100-101:197-206.DOI: 10.1016/j.matbio.2020.12.006.
    [46]
    McCormackA,HighleyCB,LeslieNR,et al.3D printing in suspension baths: keeping the promises of bioprinting afloat[J].Trends Biotechnol,2020,38(6):584-593.DOI: 10.1016/j.tibtech.2019.12.020.
    [47]
    RamezaniH, ZhouLY, ShaoL, et al. Coaxial 3D bioprinting of organ prototyps from nutrients delivery to vascularization[J]. J Zhejiang Univ Sci A, 2020,21:859-875. DOI: 10.1631/jzus.A2000261.
  • Relative Articles

    [1]Chen Wei, Xu Guangchao, Huang Zhonglu, Chen Li, Nie Kaiyu. Research advances on the mechanism of nerve regeneration-related protein in skin fibrosis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(5): 491-495. doi: 10.3760/cma.j.cn501225-20220701-00278
    [2]Li Yang, Xi Taotao, Zheng Dongmei, Ge Jun, Luo Xiao'e, Wang Lin. Recent advances of skin tissue engineering based on three-dimensional bioprinting technology[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(11): 1096-1100. doi: 10.3760/cma.j.cn501225-20230131-00029
    [3]Li Wei, Kong Weishi, Bao Yulu, Sun Yu. Research advances of skin tissue engineering scaffolds loaded with adipose-derived stem cells in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(11): 1090-1095. doi: 10.3760/cma.j.cn501225-20221123-00502
    [4]Yu Xiaoping, Liu Yingkai, Ma Xian, Tang Jiajun, Niu Yiwen, Zhou Junli, Lu Shuliang. Effect of deep dermal tissue dislocation injury on skin fibrosis in pig[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(11): 1057-1065. doi: 10.3760/cma.j.cn501120-20210831-00301
    [5]Zeng Yingnan, Kang Yangbo, Xu Yong'an. Research advances on skin sweat gland regeneration induced by stem cells and tissue engineering[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(9): 900-904. doi: 10.3760/cma.j.cn501120-20200624-00328
    [6]Xiao Shichu, Zheng Yongjun. Status and challenges of tissue-engineered skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(3): 166-170. doi: 10.3760/cma.j.cn501120-20191202-00449
    [7]Wang Peng, Xiao Yan, Zhang Hongyan. Advances in the research of application of dental stem cells in neural tissue engineering[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(12): 887-890. doi: 10.3760/cma.j.issn.1009-2587.2019.12.012
    [8]Zhu Zhikang, Wu Pan, Wang Xingang, Han Chunmao. Advances in the research of sensory nerve regeneration in tissue engineering skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(3): 237-240. doi: 10.3760/cma.j.issn.1009-2587.2019.03.016
    [9]Chen Haojiao, Wu Pan, Wang Xin′gang, Han Chunmao. Advances in the research of application of three-dimensional bioprinting in skin tissue engineering[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(6): 422-426. doi: 10.3760/cma.j.issn.1009-2587.2018.06.026
    [10]Sheng Jiajun, Liu Gongcheng, Li Haihang, Zhu Shihui. Advances in the research of three-dimensional skin printing[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2017, 33(1): 27-30. doi: 10.3760/cma.j.issn.1009-2587.2017.01.007
    [11]Li Ran, Wang Hong, Leng Chongyan, Wang Kuan, Xie Ying. Advances in the research of natural polymeric materials and their derivatives in the manufacture of scaffolds for dermal tissue engineering[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(5): 316-318. doi: 10.3760/cma.j.issn.1009-2587.2016.05.014
    [12]HAN Chun-mao, WANG Xin-gang. Tissue engineered skin and regenerative wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2013, 29(2): 122-125. doi: 10.3760/cma.j.issn.1009-2587.2013.02.008
    [13]WANG Xin-gang, FENG Zhan-zeng, GUO Ming-feng, HAN Chun-mao. Advances in research of the strategies for promoting angio- genesis in tissue engineering[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2012, 28(5): 374-377. doi: 10.3760/cma.j.issn.1009-2587.2012.05.016
    [16]MA Zhong-feng, CHAI Jia-ke, YANG Hong-ming, LIANG Li-ming, XU Ming-huo. Construction of tissue-engineering skin with carrier of active composite dermal matrix[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2008, 24(4): 272-274.
    [18]ZHANG zhi, LIU Yan, ZHANG Xiong, XU Wei-shi. The content of decorin and its mRNA expression in normal human skin and hyperplastic scars[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2004, 20(2): 76-78.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.5 %FULLTEXT: 21.5 %META: 69.7 %META: 69.7 %PDF: 8.8 %PDF: 8.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.2 %其他: 7.2 %其他: 0.2 %其他: 0.2 %上海: 2.8 %上海: 2.8 %佛山: 0.4 %佛山: 0.4 %兰州: 1.1 %兰州: 1.1 %北京: 6.7 %北京: 6.7 %南京: 5.8 %南京: 5.8 %南宁: 0.2 %南宁: 0.2 %南昌: 0.2 %南昌: 0.2 %呼和浩特: 0.7 %呼和浩特: 0.7 %哥伦布: 0.5 %哥伦布: 0.5 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.4 %天津: 0.4 %太原: 0.9 %太原: 0.9 %安康: 0.2 %安康: 0.2 %安阳: 0.4 %安阳: 0.4 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 0.9 %广州: 0.9 %弗吉: 0.5 %弗吉: 0.5 %张家口: 3.5 %张家口: 3.5 %惠州: 0.2 %惠州: 0.2 %成都: 0.5 %成都: 0.5 %扬州: 0.2 %扬州: 0.2 %拉贾斯坦邦: 1.1 %拉贾斯坦邦: 1.1 %无锡: 0.4 %无锡: 0.4 %昆明: 2.1 %昆明: 2.1 %朝阳: 1.1 %朝阳: 1.1 %杭州: 0.4 %杭州: 0.4 %格兰特县: 0.5 %格兰特县: 0.5 %梅州: 0.4 %梅州: 0.4 %武汉: 0.9 %武汉: 0.9 %汕头: 0.2 %汕头: 0.2 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 1.6 %洛阳: 1.6 %济南: 0.2 %济南: 0.2 %海得拉巴: 0.5 %海得拉巴: 0.5 %淄博: 0.2 %淄博: 0.2 %深圳: 1.2 %深圳: 1.2 %渭南: 0.2 %渭南: 0.2 %漯河: 0.4 %漯河: 0.4 %烟台: 0.2 %烟台: 0.2 %珠海: 0.4 %珠海: 0.4 %石家庄: 0.5 %石家庄: 0.5 %石河子: 0.7 %石河子: 0.7 %福州: 0.5 %福州: 0.5 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.4 %绍兴: 0.4 %芒廷维尤: 26.6 %芒廷维尤: 26.6 %芝加哥: 1.9 %芝加哥: 1.9 %苏州: 1.9 %苏州: 1.9 %西宁: 8.3 %西宁: 8.3 %西安: 1.9 %西安: 1.9 %赣州: 0.2 %赣州: 0.2 %连云港: 0.2 %连云港: 0.2 %遵义: 0.2 %遵义: 0.2 %郑州: 0.2 %郑州: 0.2 %重庆: 3.9 %重庆: 3.9 %长春: 0.4 %长春: 0.4 %长沙: 2.6 %长沙: 2.6 %阿什本: 0.2 %阿什本: 0.2 %雅加达: 0.7 %雅加达: 0.7 %青岛: 2.6 %青岛: 2.6 %其他其他上海佛山兰州北京南京南宁南昌呼和浩特哥伦布嘉兴天津太原安康安阳宣城常州常德广州弗吉张家口惠州成都扬州拉贾斯坦邦无锡昆明朝阳杭州格兰特县梅州武汉汕头沈阳洛阳济南海得拉巴淄博深圳渭南漯河烟台珠海石家庄石河子福州纽约绍兴芒廷维尤芝加哥苏州西宁西安赣州连云港遵义郑州重庆长春长沙阿什本雅加达青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (394) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return