Citation: | Zhao JH,Lyu YH,Lei YH.Visualized analysis of research hotspots and evolutionary trends in the field of wound repair mechanism research[J].Chin J Burns Wounds,2024,40(5):433-442.DOI: 10.3760/cma.j.cn501225-20240118-00022. |
[1] |
BarrientosS, BremH, StojadinovicO, et al. Clinical application of growth factors and cytokines in wound healing[J]. Wound Repair Regen, 2014,22(5):569-578. DOI: 10.1111/wrr.12205.
|
[2] |
NieC, YangD, XuJ, et al. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis[J]. Cell Transplant, 2011,20(2):205-216. DOI: 10.3727/096368910X520065.
|
[3] |
WangM, XuX, LeiX, et al. Mesenchymal stem cell-based therapy for burn wound healing[J/OL]. Burns Trauma, 2021,9:tkab002[2024-01-18]. https://pubmed.ncbi.nlm.nih.gov/34212055/. DOI: 10.1093/burnst/tkab002.
|
[4] |
YangX, MoW, ShiY, et al. Fumaria officinalis-loaded chitosan nanoparticles dispersed in an alginate hydrogel promote diabetic wounds healing by upregulating VEGF, TGF-β, and b-FGF genes: a preclinical investigation[J]. Heliyon, 2023,9(7):e17704. DOI: 10.1016/j.heliyon.2023.e17704.
|
[5] |
陈瀚熙, 黄颖雯, 刘汶佶, 等. 国内外电烧伤研究现状与热点的可视化分析[J].中华烧伤与创面修复杂志,2023,39(10):977-984. DOI: 10.3760/cma.j.cn501225-20230511-00167.
|
[6] |
KulkarniAB, HuhCG, BeckerD, et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death[J]. Proc Natl Acad Sci U S A, 1993, 90(2):770-774. DOI: 10.1073/pnas.90.2.770.
|
[7] |
LiY, FanJ, ChenM, et al. Transforming growth factor-alpha: a major human serum factor that promotes human keratinocyte migration[J]. J Invest Dermatol, 2006,126(9):2096-2105. DOI: 10.1038/sj.jid.5700350.
|
[8] |
ClarkDA, CokerR. Transforming growth factor-beta (TGF-beta)[J]. Int J Biochem Cell Biol, 1998,30(3):293-298. DOI: 10.1016/s1357-2725(97)00128-3.
|
[9] |
AranyPR, FlandersKC, KobayashiT, et al. Smad3 deficiency alters key structural elements of the extracellular matrix and mechanotransduction of wound closure[J]. Proc Natl Acad Sci U S A, 2006,103(24):9250-9255. DOI: 10.1073/pnas.0602473103.
|
[10] |
SunJ, ZhaoH, ShenC, et al. Tideglusib promotes wound healing in aged skin by activating PI3K/Akt pathway[J]. Stem Cell Res Ther, 2022,13(1):269. DOI: 10.1186/s13287-022-02949-2.
|
[11] |
CaronC, DeGeerJ, FournierP, et al. CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis[J]. Sci Rep, 2016,6:27485. DOI: 10.1038/srep27485.
|
[12] |
NishidaT, KondoS, MaedaA, et al. CCN family 2/connective tissue growth factor (CCN2/CTGF) regulates the expression of Vegf through Hif-1alpha expression in a chondrocytic cell line, HCS-2/8, under hypoxic condition[J]. Bone, 2009,44(1):24-31. DOI: 10.1016/j.bone.2008.08.125.
|
[13] |
WijesooriyaLI, WaidyathilakeD. Antimicrobial properties of nonantibiotic agents for effective treatment of localized wound infections: a minireview[J]. Int J Low Extrem Wounds, 2022,21(3):207-218. DOI: 10.1177/1534734620939748.
|
[14] |
BangS, JungUW, NohI. Synthesis and biocompatibility characterizations of in situ chondroitin sulfate-gelatin hydrogel for tissue engineering[J]. Tissue Eng Regen Med, 2018,15(1):25-35. DOI: 10.1007/s13770-017-0089-3.
|
[15] |
MehataAK, SetiaA, Vikas, et al. Vitamin E TPGS-based nanomedicine, nanotheranostics, and targeted drug delivery: past, present, and future[J]. Pharmaceutics, 2023,15(3):722. DOI: 10.3390/pharmaceutics15030722.
|
[16] |
LiuH, WangC, LiC, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing[J]. RSC Adv, 2018,8(14):7533-7549. DOI: 10.1039/c7ra13510f.
|
[17] |
WengT, WangJ, YangM, et al. Nanomaterials for the delivery of bioactive factors to enhance angiogenesis of dermal substitutes during wound healing[J/OL]. Burns Trauma, 2022,10:tkab049[2024-01-18].https://pubmed.ncbi.nlm.nih.gov/36960274/. DOI: 10.1093/burnst/tkab049.
|
[18] |
KolanthaiE, FuY, KumarU, et al. Nanoparticle mediated RNA delivery for wound healing[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2022,14(2):e1741. DOI: 10.1002/wnan.1741.
|
[19] |
LeeV, RompolasP. Corneal regeneration: insights in epithelial stem cell heterogeneity and dynamics[J]. Curr Opin Genet Dev, 2022,77:101981. DOI: 10.1016/j.gde.2022.101981.
|
[20] |
ChoiYS, ZhangY, XuM, et al. Distinct functions for Wnt/β-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis[J]. Cell Stem Cell, 2013,13(6):720-733. DOI: 10.1016/j.stem.2013.10.003.
|
[21] |
ChengP, SunX, YinD, et al. Nanog down-regulates the Wnt signaling pathway via β-catenin phosphorylation during epidermal stem cell proliferation and differentiation[J]. Cell Biosci, 2015,5:5. DOI: 10.1186/2045-3701-5-5.
|
[22] |
StamosJL, WeisWI. The β-catenin destruction complex[J]. Cold Spring Harb Perspect Biol, 2013,5(1):a007898. DOI: 10.1101/cshperspect.a007898.
|
[23] |
BisevacJ, KattaK, PetrovskiG, et al. Wnt/β-catenin signaling activation induces differentiation in human limbal epithelial stem cells cultured ex vivo[J]. Biomedicines, 2023,11(7):1829. DOI: 10.3390/biomedicines11071829.
|
[24] |
JorgeL, GómezAlvarez, PazziniJM, et al. Effects of canine adipose-derived mesenchymal stem cells on the epithelialization of rabbits' skin autograft (Oryctolagus cuniculus)[J].Pesquisa Veterinária Brasileira, 2020, 40(12):1018-1028.DOI: 10.1590/1678-5150-pvb-6543.
|
[25] |
PitulescuME, SchmidtI, GiaimoBD, et al. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation[J]. Nat Cell Biol, 2017,19(8):915-927. DOI: 10.1038/ncb3555.
|
[26] |
KhanS, VillalobosMA, ChoronRL, et al. Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells[J]. J Vasc Surg, 2017,65(5):1483-1492. DOI: 10.1016/j.jvs.2016.04.034.
|
[27] |
YuF, WitmanN, YanD, et al. Human adipose-derived stem cells enriched with VEGF-modified mRNA promote angiogenesis and long-term graft survival in a fat graft transplantation model[J]. Stem Cell Res Ther, 2020,11(1):490. DOI: 10.1186/s13287-020-02008-8.
|
[28] |
HuayllaniMT, Sarabia-EstradaR, RestrepoDJ, et al. Adipose-derived stem cells in wound healing of full-thickness skin defects: a review of the literature[J]. J Plast Surg Hand Surg, 2020,54(5):263-279. DOI: 10.1080/2000656X.2020.1767116.
|
[29] |
ZhangW, BaiX, ZhaoB, et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway[J]. Exp Cell Res, 2018,370(2):333-342. DOI: 10.1016/j.yexcr.2018.06.035.
|
[30] |
XiaJ, MinaminoS, KuwabaraK, et al. Stem cell secretome as a new booster for regenerative medicine[J]. Biosci Trends, 2019,13(4):299-307. DOI: 10.5582/bst.2019.01226.
|
[31] |
ShangB, XuT, HuN, et al. Circ-Klhl8 overexpression increased the therapeutic effect of EPCs in diabetic wound healing via the miR-212-3p/SIRT5 axis[J]. J Diabetes Complications, 2021,35(11):108020. DOI: 10.1016/j.jdiacomp.2021.108020.
|
[32] |
WangZ, FengC, LiuH, et al. Hypoxic pretreatment of adipose-derived stem cells accelerates diabetic wound healing via circ-Gcap14 and HIF-1α/VEGF mediated angiopoiesis[J]. Int J Stem Cells, 2021,14(4):447-454. DOI: 10.15283/ijsc21050.
|
[33] |
LiY, ChengT, WanC, et al. circRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140-3p and inducing TGFA gene expression in retinal pigment epithelial cells[J]. Gene, 2020,747:144653. DOI: 10.1016/j.gene.2020.144653.
|
[34] |
WangA, TomaMA, MaJ, et al. Circular RNA hsa_circ_0084443 is upregulated in diabetic foot ulcer and modulates keratinocyte migration and proliferation[J]. Adv Wound Care (New Rochelle), 2020,9(4):145-160. DOI: 10.1089/wound.2019.0956.
|
[1] | Dong Zuqin, Chen Yafang, Liang Jie, Fan Yujiang. Research advances of collagen-based biomaterials in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(1): 90-95. doi: 10.3760/cma.j.cn501225-20231026-00136 |
[2] | Liu Huazhen, Zhang Yi, Gao Chuang, Lu Chunxiang, Guo Zilong, Sun Wenbin, Xiao Shichu, Liu Yuanyuan. Research advances on in-situ cell electrospinning and its application in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(7): 694-698. doi: 10.3760/cma.j.cn501225-20231123-00204 |
[3] | Duan Yuren, Zhao Yuchen, Song Wenyu, Wang Jiaxin, Pei Jie, Wang Xiaobing. Research advances on improving the therapeutic efficacy of mesenchymal stem cell-derived exosomes in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(7): 695-700. doi: 10.3760/cma.j.cn501225-20220912-00402 |
[4] | Zeng Shuaidan, Yang Lei. Research advances of various omics analyses in chronic refractory wounds on body surface[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(1): 75-80. doi: 10.3760/cma.j.cn501225-20220216-00030 |
[5] | Ma Qimin, Wang Yusong, Hou Wenjia, Liu Xiaobin, Shen Tuo, Zhu Feng. Visual analysis of the current research status and development of burn-related coagulation dysfunction[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(4): 356-363. doi: 10.3760/cma.j.cn501225-20220616-00237 |
[6] | Shen Mingyan, Han Linqiu, Feng Zhixian. Visualized analysis of research on the information management of pressure injury care in hospitals of China[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(11): 1083-1089. doi: 10.3760/cma.j.cn501225-20221127-00510 |
[7] | Chen Hanxi, Huang Yingwen, Liu Wenji, Liu Bing, Chen Guibing, Zhang Doudou, Chen Pingyun, Lai Wen. Visual analysis of the current research status and hotspots of electric burns at home and abroad[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(10): 977-984. doi: 10.3760/cma.j.cn501225-20230511-00167 |
[8] | Shi Zhiyuan, Zhang Bohan, Sun Jiachen, Liu Xinzhu, Shen Chuan'an. Research advances on the role and mechanism of epidermal stem cells in skin wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(9): 854-858. doi: 10.3760/cma.j.cn501120-20211109-00382 |
[9] | Ding Zhaozhao, Lyu Qiang. Research advances on the application of silk fibroin biomaterials in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(10): 973-977. doi: 10.3760/cma.j.cn501225-20220602-00212 |
[10] | Huang Zhuo, Li Yulin, Xie Weiguo, Jiang Meijun, Chen Lan, Xi Maomao. Analysis of the development trend of burn discipline from the literature published in Chinese Journal of Burns in 22 years[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(8): 759-766. doi: 10.3760/cma.j.cn501120-20210610-00215 |
[11] | Zhang Mengyuan, Ding Gaofeng, He Qiong, Liu Jinling, Wang Tong, Zhang Baolin. Bibliometric and visual analysis of current status and trends of international research on keloids[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(3): 263-270. doi: 10.3760/cma.j.cn501120-20200226-00093 |
[12] | Cheng Wenfeng, Shen Chuan′an, Zhao Dongxu, Li Dawei, Shang Yuru. Bibliometric analysis of scientific articles on epidemiological study of burns in China[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2017, 33(4): 233-237. doi: 10.3760/cma.j.issn.1009-2587.2017.04.009 |
[13] | Yue Liqing, Pi Xiqing, Fan Xuegong. Bibliometric analysis of scientific articles on evidence-based nursing of burn in the mainland of China[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(7): 442-446. doi: 10.3760/cma.j.issn.1009-2587.2016.07.016 |
[15] | Sun Ying, Cao Jie, Feng Ping, Zhang Lingjuan. Bibliometric analysis of scientific articles on rehabilitation nursing for adult burn patients in China[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2015, 31(3): 168-171. doi: 10.3760/cma.j.issn.1009-2587.2015.03.003 |
[17] | Li Xiuquan, Sun Guangfeng, Wang Dali, Wei Zairong, Qi Jianping, Nie Kaiyu, Jin Wenhu, . Repair of skin and soft tissue defects on the wrist with reverse bi-pedicle posterior interosseous artery perforator flap[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2014, 30(5): 424-427. doi: 10.3760/cma.j.issn.1009-2587.2014.05.014 |
[18] | TAN Qian, ZHOU Hong-reng, WANG Shu-qin, ZHENG Dong-fenrg, XU Peng, WU Jie, GE Hua-qiang, LIN Yue, YAN Xin. Aesthetic effect of wound repair with flaps[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2012, 28(4): 248-252. doi: 10.3760/cma.j.issn.1009-2587.2012.04.003 |
[19] | ZHOU Xiao-bin, TENC Hong-song, ZHAO Wen-ke, ZHANC Chao-ying, LU Xiao-qing. Statistical analysis of articles, citations and authors in Chinese Journal of Burns from 2003 to 2005[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2007, 23(5): 365-368. |