Shi X, Zeng Z, Zhang YM,et al.Research advances on the interaction between Pseudomonas aeruginosa bacteriophages and the host[J].Chin J Burns Wounds,2022,38(9):849-853.DOI: 10.3760/cma.j.cn501120-20210929-00338.
Citation:
Shi X, Zeng Z, Zhang YM,et al.Research advances on the interaction between Pseudomonas aeruginosa bacteriophages and the host[J].Chin J Burns Wounds,2022,38(9):849-853.DOI: 10.3760/cma.j.cn501120-20210929-00338.
Shi X, Zeng Z, Zhang YM,et al.Research advances on the interaction between Pseudomonas aeruginosa bacteriophages and the host[J].Chin J Burns Wounds,2022,38(9):849-853.DOI: 10.3760/cma.j.cn501120-20210929-00338.
Citation:
Shi X, Zeng Z, Zhang YM,et al.Research advances on the interaction between Pseudomonas aeruginosa bacteriophages and the host[J].Chin J Burns Wounds,2022,38(9):849-853.DOI: 10.3760/cma.j.cn501120-20210929-00338.
Department of Plastic and Cosmetic Surgery, the Second Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400037, China
2.
State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing 400038, China
Funds:
General Program of National Natural Science Foundation of China81772073
Youth Science Foundation Project of National Natural Science Foundation of China82002051
Foundation of Open Projects from State Key Laboratory of Trauma, Burns and Combined InjurySKLKF201918
General Program of Natural Science Foundation of Chongqingcstc2021jcyj-msxmX0655
Chongqing Doctor "Through Train" ProjectCSTB2022BSXM-JCX0019
Abstract:Pseudomonas aeruginosa is the most common pathogen of burn wound infection. It can encode a variety of virulence factors and is highly pathogenic, which can lead to poor prognosis and high mortality. In order to research a new method to combat Pseudomonas aeruginosa infection, researchers have observed a wide range of interactions between the bacteriophages and the host. Bacteriophages influence and even dominate the structure, movement, and metabolism of host bacteria through a variety of mechanisms, catalyze the evolution of the host, and are also an important factor in host environmental adaptability and pathogenicity. In this paper, the interaction between Pseudomonas aeruginosa bacteriophages and the host is reviewed from the single cell level and the population level. Understanding these interactions could provide new idea for the treatment of Pseudomonas aeruginosa clinical infections, provides a basis for future development of antimicrobial agents and guides the treatment of burn infections.
GongYL, ChenJ, LiuCJ,et al.Comparison of pathogens and antibiotic resistance of burn patients in the burn ICU or in the common burn ward[J].Burns,2014,40(3):402-407.DOI: 10.1016/j.burns.2013.07.010.
[2]
YinSP,ChenP,YouB,et al.Molecular typing and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a Chinese burn center from 2011 to 2016[J].Front Microbiol,2018,9:1135.DOI: 10.3389/fmicb.2018.01135.
[3]
ThadenJT,ParkLP,MaskarinecSA,et al.Results from a 13-year prospective cohort study show increased mortality associated with bloodstream infections caused by Pseudomonas aeruginosa compared to other bacteria[J].Antimicrob Agents Chemother,2017,61(6):e02671-16.DOI: 10.1128/AAC.02671-16.
FeinerR,ArgovT,RabinovichL,et al.A new perspective on lysogeny: prophages as active regulatory switches of bacteria[J].Nat Rev Microbiol,2015,13(10):641-650.DOI: 10.1038/nrmicro3527.
[8]
CenensW,MakumiA,GoversSK,et al.Viral transmission dynamics at single-cell resolution reveal transiently immune subpopulations caused by a carrier state association[J].PLoS Genet,2015,11(12):e1005770.DOI: 10.1371/journal.pgen.1005770.
[9]
SamsonJE,MagadánAH,SabriM,et al.Revenge of the phages: defeating bacterial defences[J].Nat Rev Microbiol,2013,11(10):675-687.DOI: 10.1038/nrmicro3096.
[10]
LeS,HeXS,TanYL,et al.Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004[J].PLoS One,2013,8(7):e68562.DOI: 10.1371/journal.pone.0068562.
[11]
GlontiT,ChanishviliN,TaylorPW.Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa[J].J Appl Microbiol,2010,108(2):695-702.DOI: 10.1111/j.1365-2672.2009.04469.x.
[12]
ChungIY,JangHJ,BaeHW,et al.A phage protein that inhibits the bacterial ATPase required for type Ⅳ pilus assembly[J].Proc Natl Acad Sci U S A,2014,111(31):11503-11508.DOI: 10.1073/pnas.1403537111.
[13]
WeigeleP,RaleighEA.Biosynthesis and function of modified bases in bacteria and their viruses[J].Chem Rev,2016,116(20):12655-12687.DOI: 10.1021/acs.chemrev.6b00114.
[14]
GarneauJE,DupuisMÈ,VillionM,et al.The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J].Nature,2010,468(7320):67-71.DOI: 10.1038/nature09523.
[15]
PawlukA,StaalsRHJ,TaylorC,et al.Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species[J].Nat Microbiol,2016,1(8):16085.DOI: 10.1038/nmicrobiol.2016.85.
[16]
Bondy-DenomyJ,PawlukA,MaxwellKL,et al.Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system[J].Nature,2013,493(7432):429-432.DOI: 10.1038/nature11723.
[17]
CadyKC,Bondy-DenomyJ,HeusslerGE,et al.The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages[J].J Bacteriol,2012,194(21):5728-5738.DOI: 10.1128/JB.01184-12.
[18]
AliSS,XiaB,LiuJ,et al.Silencing of foreign DNA in bacteria[J].Curr Opin Microbiol,2012,15(2):175-181.DOI: 10.1016/j.mib.2011.12.014.
Van den BosscheA,CeyssensPJ,De SmetJ,et al.Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa[J].J Proteome Res,2014,13(10):4446-4456.DOI: 10.1021/pr500796n.
[21]
YakuninaM,ArtamonovaT,BorukhovS,et al.A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage[J].Nucleic Acids Res,2015,43(21):10411-10420.DOI: 10.1093/nar/gkv1095.
[22]
杨子晨噬菌体在烧伤泛耐药细菌感染治疗中的机制研究重庆陆军军医大学2019
杨子晨.噬菌体在烧伤泛耐药细菌感染治疗中的机制研究[D].重庆:陆军军医大学, 2019.
[23]
BreitbartM, ThompsonL, SuttleCA, et al. Exploring the vast diversity of marine viruses[J]. Oceanography, 2007, 20(2): 135-139. DOI: 10.5670/oceanog.2007.58.
[24]
De SmetJ,ZimmermannM,KogadeevaM,et al.High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection[J].ISME J,2016,10(8):1823-1835.DOI: 10.1038/ismej.2016.3.
[25]
YanoST,Rothman-DenesLB.A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader[J].Mol Microbiol,2011,79(5):1325-1338.DOI: 10.1111/j.1365-2958.2010.07526.x.
[26]
ErbML,KraemerJA,CokerJK,et al.A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells[J].Elife,2014,3:e03197.DOI: 10.7554/eLife.03197.
[27]
KoskellaB,BrockhurstMA.Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities[J].FEMS Microbiol Rev,2014,38(5):916-931.DOI: 10.1111/1574-6976.12072.
[28]
GómezP,BucklingA.Bacteria-phage antagonistic coevolution in soil[J].Science,2011,332(6025):106-109.DOI: 10.1126/science.1198767.
[29]
HallAR,ScanlanPD,MorganAD,et al.Host-parasite coevolutionary arms races give way to fluctuating selection[J].Ecol Lett,2011,14(7):635-642.DOI: 10.1111/j.1461-0248.2011.01624.x.
[30]
GorterFA,ScanlanPD,BucklingA.Adaptation to abiotic conditions drives local adaptation in bacteria and viruses coevolving in heterogeneous environments[J].Biol Lett,2016,12(2):20150879.DOI: 10.1098/rsbl.2015.0879.
[31]
MonsonR,FouldsI,FowerakerJ,et al.The Pseudomonas aeruginosa generalized transducing phage phiPA3 is a new member of the phiKZ-like group of 'jumbo' phages, and infects model laboratory strains and clinical isolates from cystic fibrosis patients[J].Microbiology (Reading),2011,157(Pt 3):859-867.DOI: 10.1099/mic.0.044701-0.
[32]
TaylorTB,BucklingA.Bacterial motility confers fitness advantage in the presence of phages[J].J Evol Biol,2013,26(10):2154-2160.DOI: 10.1111/jeb.12214.
[33]
ScanlanPD,BucklingA.Co-evolution with lytic phage selects for the mucoid phenotype of Pseudomonas fluorescens SBW25[J].ISME J,2012,6(6):1148-1158.DOI: 10.1038/ismej.2011.174.
[34]
FrimanVP,BucklingA.Effects of predation on real-time host-parasite coevolutionary dynamics[J].Ecol Lett,2013,16(1):39-46.DOI: 10.1111/ele.12010.
[35]
FrimanVP,BucklingA.Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities[J].ISME J,2014,8(9):1820-1830.DOI: 10.1038/ismej.2014.40.
[36]
Bondy-DenomyJ,QianJ,WestraER,et al.Prophages mediate defense against phage infection through diverse mechanisms[J].ISME J,2016,10(12):2854-2866.DOI: 10.1038/ismej.2016.79.
[37]
AbdallahK,HartmanK,PletzerD,et al.The bacteriophage-derived transcriptional regulator, LscR, activates the expression of levansucrase genes in Pseudomonas syringae[J].Mol Microbiol,2016,102(6):1062-1074.DOI: 10.1111/mmi.13536.
[38]
LeS,YaoXY,LuSG,et al.Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa[J].Sci Rep,2014,4:4738.DOI: 10.1038/srep04738.
[39]
TaylorVL,UdaskinML,IslamST,et al.The D3 bacteriophage α-polymerase inhibitor (Iap) peptide disrupts O-antigen biosynthesis through mimicry of the chain length regulator Wzz in Pseudomonas aeruginosa[J].J Bacteriol,2013,195(20):4735-4741.DOI: 10.1128/JB.00903-13.
[40]
YangZC,YinSP,LiG,et al.Global transcriptomic analysis of the interactions between phage φAbp1 and extensively drug-resistant Acinetobacter baumannii[J].mSystems,2019,4(2):e00068-19.DOI: 10.1128/mSystems.00068-19.
[41]
ChanBK, SistromM, WertzJE, et al.Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa[J].Scientific Reports,2016,6:26717. DOI: 10.1038/srep26717.