留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重度烧伤的转录组学研究:价值与机遇

贾赤宇 尹斌 张泽鑫

贾赤宇, 尹斌, 张泽鑫. 重度烧伤的转录组学研究:价值与机遇[J]. 中华烧伤与创面修复杂志, 2024, 40(6): 514-520. DOI: 10.3760/cma.j.cn501225-20231026-00135.
引用本文: 贾赤宇, 尹斌, 张泽鑫. 重度烧伤的转录组学研究:价值与机遇[J]. 中华烧伤与创面修复杂志, 2024, 40(6): 514-520. DOI: 10.3760/cma.j.cn501225-20231026-00135.
Jia CY,Yin B,Zhang ZX.Transcriptomic research on severe burns: value and prospects[J].Chin J Burns Wounds,2024,40(6):514-520.DOI: 10.3760/cma.j.cn501225-20231026-00135.
Citation: Jia CY,Yin B,Zhang ZX.Transcriptomic research on severe burns: value and prospects[J].Chin J Burns Wounds,2024,40(6):514-520.DOI: 10.3760/cma.j.cn501225-20231026-00135.

重度烧伤的转录组学研究:价值与机遇

doi: 10.3760/cma.j.cn501225-20231026-00135
基金项目: 

厦门大学附属翔安医院青年科研基金 XM01120001

福建省卫生健康科技计划项目 2020TG028

详细信息
    通讯作者:

    贾赤宇,Email:jiachiyu@qq.com

Transcriptomic research on severe burns: value and prospects

Funds: 

Young Investigator Research Program of Xiang'an Hospital of Xiamen University XM01120001

Fujian Provincial Health Science and Technology Plan Project 2020TG028

More Information
  • 摘要: 转录组学技术在多个疾病领域显示出了显著应用效果,但其在重度烧伤尤其是烧伤脓毒症领域的应用还是浅尝辄止。使用转录组学和大数据的方法,解决重度烧伤尤其是烧伤脓毒症领域一直以来难以攻克的难题,极具前景和意义。该文对转录组学在重度烧伤尤其是烧伤脓毒症研究中的应用价值、现状以及未来前景进行全面论述,为重度烧伤的治疗提供新的思路。

     

  • 参考文献(43)

    [1] DeJesusJE,WenJJ,RadhakrishnanR.Cytokine pathways in cardiac dysfunction following burn injury and changes in genome expression[J].J Pers Med,2022,12(11):1876.DOI: 10.3390/jpm12111876.
    [2] GuoY,YouY,LvD,et al.Inducible nitric oxide synthase contributes to insulin resistance and cardiac dysfunction after burn injury in mice[J].Life Sci,2019,239:116912.DOI: 10.1016/j.lfs.2019.116912.
    [3] CarlsonDL,HortonJW.Cardiac molecular signaling after burn trauma[J].J Burn Care Res,2006,27(5):669-675.DOI: 10.1097/01.BCR.0000237955.28090.41.
    [4] YangHT,YimH,ChoYS,et al.Assessment of biochemical markers in the early post-burn period for predicting acute kidney injury and mortality in patients with major burn injury: comparison of serum creatinine, serum cystatin-C, plasma and urine neutrophil gelatinase-associated lipocalin[J].Crit Care,2014,18(4):R151.DOI: 10.1186/cc13989.
    [5] TaoF,TianX,LuM,et al.A novel lncRNA, Lnc-OC1, promotes ovarian cancer cell proliferation and migration by sponging miR-34a and miR-34c[J].J Genet Genomics,2018,45(3):137-145.DOI: 10.1016/j.jgg.2018.03.001.
    [6] AhluwaliaP,KolheR,GahlayGK.The clinical relevance of gene expression based prognostic signatures in colorectal cancer[J].Biochim Biophys Acta Rev Cancer,2021,1875(2):188513.DOI: 10.1016/j.bbcan.2021.188513.
    [7] Solé-BoldoL,RaddatzG,GutekunstJ,et al.Differentiation-related epigenomic changes define clinically distinct keratinocyte cancer subclasses[J].Mol Syst Biol,2022,18(9):e11073.DOI: 10.15252/msb.202211073.
    [8] FangX,DuanSF,GongYZ,et al.Identification of key genes associated with changes in the host response to severe burn shock: a bioinformatics analysis with data from the gene expression omnibus (GEO) database[J].J Inflamm Res,2020,13:1029-1041.DOI: 10.2147/JIR.S282722.
    [9] WangP,ZhangZ,YinB,et al.Identifying changes in immune cells and constructing prognostic models using immune-related genes in post-burn immunosuppression[J].PeerJ,2022,10:e12680.DOI: 10.7717/peerj.12680.
    [10] WuRX,ChiuCC,LinTC,et al.Procalcitonin as a diagnostic biomarker for septic shock and bloodstream infection in burn patients from the Formosa Fun Coast dust explosion[J].J Microbiol Immunol Infect,2017,50(6):872-878.DOI: 10.1016/j.jmii.2016.08.021.
    [11] TokarikM,SjöbergF,VajtrD,et al.Natriuretic peptide proANP (1-98), a biomarker of ALI/ARDS in burns[J].Burns,2013,39(2):243-248.DOI: 10.1016/j.burns.2012.06.010.
    [12] LiAT,MoussaA,GusE,et al.Biomarkers for the early diagnosis of sepsis in burns: systematic review and meta-analysis[J].Ann Surg,2022,275(4):654-662.DOI: 10.1097/SLA.0000000000005198.
    [13] LiuX,RongY,HuangD,et al.Altered genes and biological functions in response to severe burns[J].Biomed Res Int,2021,2021:8836243.DOI: 10.1155/2021/8836243.
    [14] ZhangZ,PanQ,GeH,et al.Deep learning-based clustering robustly identified two classes of sepsis with both prognostic and predictive values[J].EBioMedicine,2020,62:103081.DOI: 10.1016/j.ebiom.2020.103081.
    [15] ZhangZ,HeY,LinR,et al.Identification of important modules and biomarkers that are related to immune infiltration cells in severe burns based on weighted gene co-expression network analysis[J].Front Genet,2022,13:908510.DOI: 10.3389/fgene.2022.908510.
    [16] BajJ,Korona-GłowniakI,BuszewiczG,et al.Viral infections in burn patients: a state-of-the-art review[J].Viruses,2020,12(11):1315.DOI: 10.3390/v12111315.
    [17] EngelmannI,PetzoldDR,KosinskaA,et al.Rapid quantitative PCR assays for the simultaneous detection of herpes simplex virus, varicella zoster virus, cytomegalovirus, Epstein-Barr virus, and human herpesvirus 6 DNA in blood and other clinical specimens[J].J Med Virol,2008,80(3):467-477.DOI: 10.1002/jmv.21095.
    [18] BrennanPG,WrightK,MilesMVP,et al.Delineating the role of serum immunoglobulin titers in burn patients at high risk for herpes simplex virus infection[J].J Burn Care Res,2021,42(4):646-650.DOI: 10.1093/jbcr/irz197.
    [19] WangP,ZhangZ,LinR,et al.Machine learning links different gene patterns of viral infection to immunosuppression and immune-related biomarkers in severe burns[J].Front Immunol,2022,13:1054407.DOI: 10.3389/fimmu.2022.1054407.
    [20] ZhengY,LiuB,DengX,et al.Construction and validation of a robust prognostic model based on immune features in sepsis[J].Front Immunol,2022,13:994295.DOI: 10.3389/fimmu.2022.994295.
    [21] ZhouB,XuW,HerndonD,et al.Analysis of factorial time-course microarrays with application to a clinical study of burn injury[J].Proc Natl Acad Sci U S A,2010,107(22):9923-9928.DOI: 10.1073/pnas.1002757107.
    [22] WuD,ZhouM,LiL,et al.Severe burn injury progression and phasic changes of gene expression in mouse model[J].Inflammation,2019,42(4):1239-1251.DOI: 10.1007/s10753-019-00984-5.
    [23] WuD,ZhouM,LiL,et al.Time series analysis of gene changes and processes after burn with human gene expression profiles[J].Burns,2019,45(2):387-397.DOI: 10.1016/j.burns.2018.08.022.
    [24] 夏照帆,伍国胜.浅谈细胞因子在脓毒症中的作用及临床应用现状[J].中华烧伤杂志,2019,35(1):3-7.DOI: 10.3760/cma.j.issn.1009-2587.2019.01.002.
    [25] DemlingRH.The burn edema process: current concepts[J].J Burn Care Rehabil,2005,26(3):207-227.
    [26] PhamTN,CancioLC,GibranNS.American Burn Association practice guidelines burn shock resuscitation[J].J Burn Care Res,2008,29(1):257-266.DOI: 10.1097/BCR.0b013e31815f3876.
    [27] SabryA,El-DinAB,El-HadidyAM,et al.Markers of tubular and glomerular injury in predicting acute renal injury outcome in thermal burn patients: a prospective study[J].Ren Fail,2009,31(6):457-463.DOI: 10.1080/08860220902963616.
    [28] WilliamsFN,HerndonDN,JeschkeMG.The hypermetabolic response to burn injury and interventions to modify this response[J].Clin Plast Surg,2009,36(4):583-596.DOI: 10.1016/j.cps.2009.05.001.
    [29] WangY,YinX,YangF.Comprehensive analysis of gene expression profiles of sepsis-induced multiorgan failure identified its valuable biomarkers[J].DNA Cell Biol,2018,37(2):90-98.DOI: 10.1089/dna.2017.3944.
    [30] DengH,LiJ,Ali ShahA,et al.Commonly expressed key transcriptomic profiles of sepsis in the human circulation and brain via integrated analysis[J].Int Immunopharmacol,2022,104:108518.DOI: 10.1016/j.intimp.2022.108518.
    [31] ChenM,SuW,ChenF,et al.Mechanisms underlying the therapeutic effects of 4-octyl itaconate in treating sepsis based on network pharmacology and molecular docking[J].Front Genet,2022,13:1056405.DOI: 10.3389/fgene.2022.1056405.
    [32] JekarlDW,KimKS,LeeS,et al.Cytokine and molecular networks in sepsis cases: a network biology approach[J].Eur Cytokine Netw,2018,29(3):103-111.DOI: 10.1684/ecn.2018.0414.
    [33] CuiS,NiuK,XieY,et al.Screening of potential key ferroptosis-related genes in sepsis[J].PeerJ,2022,10:e13983.DOI: 10.7717/peerj.13983.
    [34] GanY,LongJ,ZengY,et al.lncRNA IL-17RA-1 attenuates LPS-induced sepsis via miR-7847-3p/PRKCG-mediated MAPK signaling pathway[J].Mediators Inflamm,2022,2022:9923204.DOI: 10.1155/2022/9923204.
    [35] SchwachaMG,ChaudryIH.The cellular basis of post-burn immunosuppression: macrophages and mediators[J].Int J Mol Med,2002,10(3):239-243.
    [36] HuangJ,ZhuZ,JiD,et al.Single-cell transcriptome profiling reveals neutrophil heterogeneity and functional multiplicity in the early stage of severe burn patients[J].Front Immunol,2021,12:792122.DOI: 10.3389/fimmu.2021.792122.
    [37] ReyesM,FilbinMR,BhattacharyyaRP,et al.An immune-cell signature of bacterial sepsis[J].Nat Med,2020,26(3):333-340.DOI: 10.1038/s41591-020-0752-4.
    [38] KokhaeiP,BaroughMS,HassanZM.Cimetidine effects on the immunosuppression induced by burn injury[J].Int Immunopharmacol,2014,22(1):273-276.DOI: 10.1016/j.intimp.2014.07.003.
    [39] DardenDB,BacherR,BruskoMA,et al.Single-cell RNA-seq of human myeloid-derived suppressor cells in late sepsis reveals multiple subsets with unique transcriptional responses: a pilot study[J].Shock,2021,55(5):587-595.DOI: 10.1097/SHK.0000000000001671.
    [40] McBrideMA,PatilTK,BohannonJK,et al.Immune checkpoints: novel therapeutic targets to attenuate sepsis-induced immunosuppression[J].Front Immunol,2020,11:624272.DOI: 10.3389/fimmu.2020.624272.
    [41] LiZ,ZhangC,LiuY,et al.Diagnostic and predictive values of ferroptosis-related genes in child sepsis[J].Front Immunol,2022,13:881914.DOI: 10.3389/fimmu.2022.881914.
    [42] YinB,HeY,ZhangZ,et al.Global burden of burns and its association with socio-economic development status, 1990-2019[J].Burns,2024,50(2):321-374.DOI: 10.1016/j.burns.2023.02.007.
    [43] YaoRQ,LiZX,WangLX,et al.Single-cell transcriptome profiling of the immune space-time landscape reveals dendritic cell regulatory program in polymicrobial sepsis[J].Theranostics,2022,12(10):4606-4628.DOI: 10.7150/thno.72760.
  • 加载中
图(1)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  25
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-26

目录

    /

    返回文章
    返回