留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人脂肪干细胞外泌体对糖尿病周围神经病变的作用及其机制

曹涛 郝彤 肖丹 张伟锋 计鹏 贾艳慧 王婧 王许杰 官浩 陶克

曹涛, 郝彤, 肖丹, 等. 人脂肪干细胞外泌体对糖尿病周围神经病变的作用及其机制[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 240-248. DOI: 10.3760/cma.j.cn501225-20231207-00230.
引用本文: 曹涛, 郝彤, 肖丹, 等. 人脂肪干细胞外泌体对糖尿病周围神经病变的作用及其机制[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 240-248. DOI: 10.3760/cma.j.cn501225-20231207-00230.
Cao T,Hao T,Xiao D,et al.Effect and mechanism of human adipose-derived stem cell exosomes on diabetic peripheral neuropathy[J].Chin J Burns Wounds,2024,40(3):240-248.DOI: 10.3760/cma.j.cn501225-20231207-00230.
Citation: Cao T,Hao T,Xiao D,et al.Effect and mechanism of human adipose-derived stem cell exosomes on diabetic peripheral neuropathy[J].Chin J Burns Wounds,2024,40(3):240-248.DOI: 10.3760/cma.j.cn501225-20231207-00230.

人脂肪干细胞外泌体对糖尿病周围神经病变的作用及其机制

doi: 10.3760/cma.j.cn501225-20231207-00230
基金项目: 

国家自然科学基金面上项目 82272269

详细信息
    通讯作者:

    陶克,Email:tao-ke2001@163.com

Effect and mechanism of human adipose-derived stem cell exosomes on diabetic peripheral neuropathy

Funds: 

General Program of National Natural Science Foundation of China 82272269

More Information
  • 摘要:   目的   探讨糖尿病周围神经病变(DPN)中神经鞘胚素蛋白表达的变化及人脂肪干细胞(ADSC)外泌体对神经鞘胚素蛋白表达变化的调节作用。   方法   该研究为前瞻性观察性临床研究联合实验研究。将空军军医大学第一附属医院(以下简称本院)2022年5月—2023年10月收治的13例符合入选标准的DPN患者(男9例、女4例,年龄32~68岁)作为DPN组,将本院该段时间收治的5例符合入选标准的非糖尿病患者(男4例、女1例,年龄29~61岁)作为对照组。采集2组患者清创或截肢后弃用组织中的趾神经或腓肠神经组织,行苏木精-伊红染色后观察神经组织的病理学变化,行免疫荧光染色后观察神经组织中S100β、神经鞘胚素的蛋白表达并对神经鞘胚素蛋白表达进行定量,分别采用蛋白质印迹法和实时荧光定量反转录PCR法检测神经鞘胚素的蛋白和mRNA表达(DPN组样本数均为13,对照组样本数均为5)。取12只雄性3~5 d龄C57BL/6小鼠,提取施万细胞,并将细胞分为常规培养组(常规培养)、单纯高糖组(仅用高浓度葡萄糖溶液培养)、高糖+外泌体组(用高浓度葡萄糖溶液和提取的人ADSC外泌体培养)。培养24 h后,采用细胞计数试剂盒8检测细胞增殖活力(样本数为6);培养48 h后,采用蛋白质印迹法检测神经鞘胚素的蛋白表达(样本数为3)。   结果   相较于对照组,DPN组患者神经组织中神经支持细胞减少、炎症细胞增多,具有典型的神经损伤表现。免疫荧光染色检测显示,相较于对照组,DPN组患者神经组织中细胞核更多,S100β的蛋白表达更少;DPN组患者神经组织中神经鞘胚素蛋白表达为71±31,明显低于对照组的1 729±62( t=76.92, P<0.05)。蛋白质印迹法检测显示,DPN组患者神经组织中的神经鞘胚素蛋白表达为0.74±0.08,明显低于对照组的0.97±0.06( t=5.49, P<0.05)。DPN组患者神经组织中神经鞘胚素的mRNA表达明显低于对照组( t=7.65, P<0.05)。培养24 h后,与常规培养组比较,单纯高糖组和高糖+外泌体组施万细胞增殖活力均明显降低( P<0.05);与单纯高糖组比较,高糖+外泌体组施万细胞增殖活力明显升高( P<0.05)。培养48 h后,与常规培养组比较,单纯高糖组、高糖+外泌体组施万细胞神经鞘胚素蛋白表达均明显降低( P<0.05);与单纯高糖组比较,高糖+外泌体组施万细胞神经鞘胚素蛋白表达明显升高( P<0.05)。   结论   DPN患者神经组织中神经鞘胚素的蛋白表达较正常神经组织降低,这可能与高糖降低了施万细胞增殖活力相关;人ADSC外泌体可能通过提高神经鞘胚素蛋白表达,改善施万细胞增殖活力,进而延缓DPN的进展。

     

  • 参考文献(38)

    [1] RehmanZU.Saving limbs in diabetics: challenges and opportunities[J].J Coll Physicians Surg Pak,2020,30(10):1003-1004.DOI: 10.29271/jcpsp.2020.10.1003.
    [2] LowLL, KwanYH, KoMSM, et al. Epidemiologic characteristics of multimorbidity and sociodemographic factors associated with multimorbidity in a rapidly aging Asian country[J]. JAMA Netw Open, 2019,2(11):e1915245. DOI: 10.1001/jamanetworkopen.2019.15245.
    [3] 《多学科合作下糖尿病足防治专家共识(2020版)》编写组.多学科合作下糖尿病足防治专家共识(2020版)全版[J].中华烧伤杂志,2020,36(8):E01-E52.DOI: 10.3760/cma.j.cn501120-20200217-01000.
    [4] Sable-MoritaS,OkuraM,TanikawaT,et al.Associations between diabetes-related foot disease, diabetes, and age-related complications in older patients[J].Eur Geriatr Med,2021,12(5):1003-1009.DOI: 10.1007/s41999-021-00491-7.
    [5] ElafrosMA,AndersenH,BennettDL,et al.Towards prevention of diabetic peripheral neuropathy: clinical presentation, pathogenesis, and new treatments[J].Lancet Neurol,2022,21(10):922-936.DOI: 10.1016/S1474-4422(22)00188-0.
    [6] EidSA,RumoraAE,BeirowskiB,et al.New perspectives in diabetic neuropathy[J].Neuron,2023,111(17):2623-2641.DOI: 10.1016/j.neuron.2023.05.003.
    [7] YinK,QiaoT,ZhangY,et al.Unraveling shared risk factors for diabetic foot ulcer: a comprehensive Mendelian randomization analysis[J].BMJ Open Diabetes Res Care,2023,11(6):e003523. DOI: 10.1136/bmjdrc-2023-003523.
    [8] SenCK,RoyS,KhannaS.Diabetic peripheral neuropathy associated with foot ulcer: one of a kind[J/OL].Antioxid Redox Signal,2023(2023-01-25)[2023-12-07]. https://pubmed.ncbi.nlm.nih.gov/35850520/.DOI:10.1089/ars.2022.0093.[published online ahead of print].
    [9] ChenD,WangM,ShangX,et al.Development and validation of an incidence risk prediction model for early foot ulcer in diabetes based on a high evidence systematic review and meta-analysis[J].Diabetes Res Clin Pract,2021,180:109040.DOI: 10.1016/j.diabres.2021.109040.
    [10] BhandariR,SharmaA,KuhadA.Novel nanotechnological approaches for targeting dorsal root ganglion (DRG) in mitigating diabetic neuropathic pain (DNP)[J].Front Endocrinol (Lausanne),2022,12:790747.DOI: 10.3389/fendo.2021.790747.
    [11] SloanG, AlamU, SelvarajahD, et al. The treatment of painful diabetic neuropathy [J]. Curr Diabetes Rev, 2022, 18(5): e070721194556. DOI: 10.2174/1573399817666210707112413.
    [12] NoceraG,JacobC.Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury[J].Cell Mol Life Sci,2020,77(20):3977-3989.DOI: 10.1007/s00018-020-03516-9.
    [13] Bosch-QueraltM,FledrichR,StassartRM.Schwann cell functions in peripheral nerve development and repair[J].Neurobiol Dis,2023,176:105952.DOI: 10.1016/j.nbd.2022.105952.
    [14] RachanaKS,ManuMS,AdviraoGM.Insulin-induced upregulation of lipoprotein lipase in Schwann cells during diabetic peripheral neuropathy[J].Diabetes Metab Syndr,2018,12(4):525-530.DOI: 10.1016/j.dsx.2018.03.017.
    [15] ZhangX,ZhaoS,YuanQ,et al.TXNIP, a novel key factor to cause Schwann cell dysfunction in diabetic peripheral neuropathy, under the regulation of PI3K/Akt pathway inhibition-induced DNMT1 and DNMT3a overexpression[J].Cell Death Dis,2021,12(7):642.DOI: 10.1038/s41419-021-03930-2.
    [16] ZhuS,LiY,BennettS,et al.The role of glial cell line-derived neurotrophic factor family member artemin in neurological disorders and cancers[J].Cell Prolif,2020,53(7):e12860.DOI: 10.1111/cpr.12860.
    [17] IlievaM, NielsenJ, KorshunovaI, et al. Artemin and an Artemin-derived peptide, artefin, induce neuronal survival, and differentiation through ret and NCAM[J].Front Mol Neurosci, 2019,12:47. DOI: 10.3389/fnmol.2019.00047.
    [18] WangR,RossomandoA,SahDWY,et al.Artemin induced functional recovery and reinnervation after partial nerve injury[J].Pain,2014,155(3):476-484.DOI: 10.1016/j.pain.2013.11.007.
    [19] WongLE, GibsonME, ArnoldHM, et al. Artemin promotes functional long-distance axonal regeneration to the brainstem after dorsal root crush[J]. Proc Natl Acad Sci U S A, 112(19):6170-6175. DOI: 10.1073/pnas.1502057112.
    [20] 中华医学会糖尿病学分会,中华医学会感染病学分会,中华医学会组织修复与再生分会.中国糖尿病足防治指南(2019版)(Ⅰ)[J].中华糖尿病杂志,2019,11(2):92-108.DOI: 10.3760/cma.j.issn.1674-5809.2019.02.004.
    [21] ZhangY,BiJ,HuangJ,et al.Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications[J].Int J Nanomedicine,2020,15:6917-6934.DOI: 10.2147/IJN.S264498.
    [22] ShanF,JiQ,SongY,et al.A fast and efficient method for isolating Schwann cells from sciatic nerves of neonatal mice[J].J Neurosci Methods,2022,366:109404.DOI: 10.1016/j.jneumeth.2021.109404.
    [23] LiK,ShiX,LuoM,et al.Taurine protects against myelin damage of sciatic nerve in diabetic peripheral neuropathy rats by controlling apoptosis of Schwann cells via NGF/Akt/GSK3β pathway[J].Exp Cell Res,2019,383(2):111557.DOI: 10.1016/j.yexcr.2019.111557.
    [24] LiuB,XinW,TanJR,et al.Myelin sheath structure and regeneration in peripheral nerve injury repair[J].Proc Natl Acad Sci U S A,2019,116(44):22347-22352.DOI: 10.1073/pnas.1910292116.
    [25] AhmedZ,SuggateEL,BrownER,et al.Schwann cell-derived factor-induced modulation of the NgR/p75NTR/EGFR axis disinhibits axon growth through CNS myelin in vivo and in vitro[J].Brain,2006,129(Pt 6):1517-1533.DOI: 10.1093/brain/awl080.
    [26] HuangL,XiaB,ShiX,et al.Time-restricted release of multiple neurotrophic factors promotes axonal regeneration and functional recovery after peripheral nerve injury[J].FASEB J,2019,33(7):8600-8613.DOI: 10.1096/fj.201802065RR.
    [27] MajdH,AminS,GhazizadehZ,et al.Deriving Schwann cells from hPSCs enables disease modeling and drug discovery for diabetic peripheral neuropathy[J].Cell Stem Cell,2023,30(5):632-647.e10.DOI: 10.1016/j.stem.2023.04.006.
    [28] YuanQ,ZhangX,WeiW,et al.Lycorine improves peripheral nerve function by promoting Schwann cell autophagy via AMPK pathway activation and MMP9 downregulation in diabetic peripheral neuropathy[J].Pharmacol Res,2022,175:105985.DOI: 10.1016/j.phrs.2021.105985.
    [29] BolonB,JingS,AsuncionF,et al.The candidate neuroprotective agent artemin induces autonomic neural dysplasia without preventing peripheral nerve dysfunction[J].Toxicol Pathol,2004,32(3):275-294.DOI: 10.1080/01926230490431475.
    [30] TakakuS,TsukamotoM,NiimiN,et al.Exendin-4 promotes Schwann cell survival/migration and myelination in vitro[J].Int J Mol Sci,2021,22(6):2971.DOI: 10.3390/ijms22062971.
    [31] YinY,QuH,YangQ,et al.Astragaloside Ⅳ alleviates Schwann cell injury in diabetic peripheral neuropathy by regulating microRNA-155-mediated autophagy[J].Phytomedicine,2021,92:153749.DOI: 10.1016/j.phymed.2021.153749.
    [32] FontanaX,HristovaM,Da CostaC,et al.c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling[J].J Cell Biol,2012,198(1):127-141.DOI: 10.1083/jcb.201205025.
    [33] de AssisACC,ReisALS,NunesLV,et al.Stem cells and tissue engineering-based therapeutic interventions: promising strategies to improve peripheral nerve regeneration[J].Cell Mol Neurobiol,2023,43(2):433-454.DOI: 10.1007/s10571-022-01199-3.
    [34] RhodeSC,BeierJP,RuhlT.Adipose tissue stem cells in peripheral nerve regeneration-in vitro and in vivo[J].J Neurosci Res,2021,99(2):545-560.DOI: 10.1002/jnr.24738.
    [35] AzamM,GhufranH,ButtH,et al.Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds[J/OL].Burns Trauma,2021,9:tkab021[2023-12-07].https://pubmed.ncbi.nlm.nih.gov/34514007/.DOI: 10.1093/burnst/tkab021.
    [36] FanB, LiC, SzaladA, et al. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes[J]. Diabetologia, 2020, 63(2): 431-443.DOI: 10.1007/s00125-019-05043-0.
    [37] YangZ,YangY,XuY,et al.Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration[J].Stem Cell Res Ther,2021,12(1):442.DOI: 10.1186/s13287-021-02528-x.
    [38] YinG, YuB, LiuC, et al. Exosomes produced by adipose-derived stem cells inhibit schwann cells autophagy and promote the regeneration of the myelin sheath [J]. Int J Biochem Cell Biol, 2021, 132:105921. DOI: 10.1016/j.biocel.2021.105921.
  • 1  DPN组DPN患者及对照组非糖尿病患者趾神经组织病理学观察 苏木精-伊红×20。1A、1B.分别为对照组和DPN组,图1B较图1A神经支持细胞减少,炎症细胞增多

    注:DPN为糖尿病周围神经病变;红色箭头指示神经支持细胞,蓝色箭头指示炎症细胞

    2  DPN组DPN患者及对照组非糖尿病患者趾神经组织中神经鞘胚素和S100β的蛋白表达。2A、2B、2C、2D、2E.分别为对照组细胞核与神经鞘胚素和S100β染色重叠、细胞核染色、S100β染色、神经鞘胚素染色、图2D方框中图形放大10倍的图片;2F、2G、2H、2I、2J.分别为DPN组细胞核与神经鞘胚素和S100β染色重叠、细胞核染色、S100β染色、神经鞘胚素染色、图2I方框中图形放大10倍的图片,可见DPN组神经组织中细胞核数量较对照组明显增多,S100β和神经鞘胚素蛋白表达明显减少

    注:进行异硫氰酸荧光素-花青素3-4′,6-二脒基-2-苯基吲哚染色;图2A、2B、2C、2D及2F、2G、2H、2I放大倍数为20倍;DPN为糖尿病周围神经病变;细胞核染色为蓝色,神经鞘胚素染色为红色,S100β染色为绿色

    3  蛋白质印迹法检测DPN组DPN患者及对照组非糖尿病患者趾神经组织中的神经鞘胚素蛋白表达

    注:DPN为糖尿病周围神经病变;条带上方的1表示对照组1例患者,2、3表示DPN组2例患者

    4  人脂肪干细胞外泌体的鉴定。4A.外泌体呈囊泡状 透射电子显微镜×40 000;4B.外泌体粒径为55~160 nm

    注:图4B为横坐标数据经过lg处理生成的图

    5  小鼠原代施万细胞的鉴定。5A.加入博来霉素48 h后,原代细胞大部分呈双极、梭形或三角形 倒置相差显微镜×200;5B.加入博来霉素培养3 d,细胞中有S100β表达 花青素3-4′,6-二脒基-2-苯基吲哚×200

    注:S100β阳性染色为红色

    6  蛋白质印迹法检测的3组小鼠施万细胞培养48 h后神经鞘胚素蛋白表达

    注:条带上方的1、2、3分别表示常规培养的常规培养组、用高浓度葡萄糖溶液培养的单纯高糖组、用人脂肪干细胞外泌体和高浓度葡萄糖溶液培养的高糖+外泌体组

  • 加载中
图(7)
计量
  • 文章访问数:  3161
  • HTML全文浏览量:  21
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07

目录

    /

    返回文章
    返回