留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺氧与炎症在创面愈合中扮演的角色

魏在荣 张演基 王达利

魏在荣, 张演基, 王达利. 缺氧与炎症在创面愈合中扮演的角色[J]. 中华烧伤与创面修复杂志, 2024, 40(6): 507-513. DOI: 10.3760/cma.j.cn501225-20240111-00014.
引用本文: 魏在荣, 张演基, 王达利. 缺氧与炎症在创面愈合中扮演的角色[J]. 中华烧伤与创面修复杂志, 2024, 40(6): 507-513. DOI: 10.3760/cma.j.cn501225-20240111-00014.
Wei ZR,Zhang YJ,Wang DL.Roles of hypoxia and inflammation in wound healing[J].Chin J Burns Wounds,2024,40(6):507-513.DOI: 10.3760/cma.j.cn501225-20240111-00014.
Citation: Wei ZR,Zhang YJ,Wang DL.Roles of hypoxia and inflammation in wound healing[J].Chin J Burns Wounds,2024,40(6):507-513.DOI: 10.3760/cma.j.cn501225-20240111-00014.

缺氧与炎症在创面愈合中扮演的角色

doi: 10.3760/cma.j.cn501225-20240111-00014
基金项目: 

国家自然科学基金地区科学基金项目 82360445

省部共建协同创新中心项目 2020-39

遵义市科技计划项目 2021-3

贵州茅台医院科研与人才培养资金 2022-13

详细信息
    通讯作者:

    王达利,Email:daliwangzy@sina.com

Roles of hypoxia and inflammation in wound healing

Funds: 

Regional Science Foundation Project of National Natural Science Foundation of China 82360445

Collaborative Innovation Center of Chinese Ministry of Education and Guizhou Province 2020-39

Science and Technology Plan Project of Zunyi City 2021-3

Scientific Research and Talent Training Funds of Kweichow Moutai Hospital 2022-13

More Information
  • 摘要: 创面愈合是一个复杂的生物学过程,缺氧和炎症是启动创面愈合和影响创面愈合进程的2个关键因素。缺氧诱导因子1α(HIF-1α)和核因子κB是缺氧和炎症环境下的重要调控因子,缺氧和炎症之间的相互作用本质上由HIF-1α和核因子κB信号通路所介导,二者失调导致的HIF-1α或核因子κB信号通路的异常表达均会影响创面微环境,导致创面异常愈合。该文讨论了缺氧和炎症对创面愈合的影响,强调了缺氧和炎症之间的相互协作对创面愈合的作用,以及二者失调对创面愈合质量的影响,并对目前缺氧和炎症信号通路的干预策略进行总结,同时对未来创面的治疗进行展望。

     

  • 参考文献(43)

    [1] McGettrickAF, O'NeillLAJ.The role of HIF in immunity and inflammation[J].Cell Metab,2020,32(4):524-536.DOI: 10.1016/j.cmet.2020.08.002.
    [2] WilkinsonHN,HardmanMJ.Wound healing: cellular mechanisms and pathological outcomes[J].Open Biol,2020,10(9):200223.DOI: 10.1098/rsob.200223.
    [3] ZhangL,JinL,GuoJL,et al.Chronic intermittent hypobaric hypoxia enhances bone fracture healing[J].Front Endocrinol (Lausanne),2021,11:582670.DOI: 10.3389/fendo.2020.582670.
    [4] ChenLH,GaoYY,LiY, et al.Severe intermittent hypoxia modulates the macrophage phenotype and impairs wound healing through downregulation of HIF-2α[J].Nat Sci Sleep,2022,14:1511-1520.DOI: 10.2147/NSS.S382275.
    [5] BaiQ,GaoQ,HuFF, et al.Reoxygenation modulates the adverse effects of hypoxia on wound repair[J].Int J Mol Sci,2022,23(24):15832.DOI: 10.3390/ijms232415832.
    [6] GuanY,NiuH,LiuZT,et al.Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation[J].Sci Adv,2021,7(35):eabj0153.DOI: 10.1126/sciadv.abj0153.
    [7] LeeP,ChandelNS,SimonMC.Cellular adaptation to hypoxia through hypoxia inducible factors and beyond[J].Nat Rev Mol Cell Biol,2020,21(5):268-283.DOI: 10.1038/s41580-020-0227-y.
    [8] AtriC,GuerfaliFZ,LaouiniD.Role of human macrophage polarization in Inflammation during infectious diseases[J].Int J Mol Sci,2018,19(6):1801.DOI: 10.3390/ijms19061801.
    [9] WuWJ,SuYC,HuCX, et al.Hypoxia-induced scleral HIF-2α upregulation contributes to rises in MMP-2 expression and myopia development in mice[J].Invest Ophthalmol Vis Sci,2022,63(8):2.DOI: 10.1167/iovs.63.8.2.
    [10] SteinerCA,CartwrightIM,TaylorCT,et al.Hypoxia-inducible factor as a bridge between healthy barrier function, wound healing, and fibrosis[J].Am J Physiol Cell Physiol,2022,323(3):C866-C878.DOI: 10.1152/ajpcell.00227.2022.
    [11] DuscherD,MaanZN,WhittamAJ, et al.Fibroblast-specific deletion of hypoxia inducible factor-1 critically impairs murine cutaneous neovascularization and wound healing[J].Plast Reconstr Surg,2015,136(5):1004-1013.DOI: 10.1097/PRS.0000000000001699.
    [12] TaiYC,ZhengLY,LiaoJ,et al.Roles of the HIF-1α pathway in the development and progression of keloids[J].Heliyon,2023,9(8):e18651.DOI: 10.1016/j.heliyon.2023.e18651.
    [13] 周璇,金琳博,张一鸣.氧微环境对急慢性创面愈合影响的研究进展[J].临床外科杂志,2022,30(12):1112-1114.DOI: 10.3969/j.issn.1005-6483.2022.12.004.
    [14] MoR,ZhangH,XuY,et al.Transdermal drug delivery via microneedles to mediate wound microenvironment[J].Adv Drug Deliv Rev,2023,195:114753.DOI: 10.1016/j.addr.2023.114753.
    [15] RaziyevaK,KimY,ZharkinbekovZ, et al.Immunology of acute and chronic wound healing[J].Biomolecules,2021,11(5):700.DOI: 10.3390/biom11050700.
    [16] TangYY,WangDC,WangYQ,et al.Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: a comprehensive review[J].Front Immunol,2022,13:1073971.DOI: 10.3389/fimmu.2022.1073971.
    [17] Castro-AlcarazS,MiskolciV,KalasapudiB,et al.NF-kappa B regulation in human neutrophils by nuclear IκBα: correlation to apoptosis[J].J Immunol,2002,169(7):3947-3953.DOI: 10.4049/jimmunol.169.7.3947.
    [18] CramerT,YamanishiY,ClausenBE,et al.HIF-1alpha is essential for myeloid cell-mediated inflammation[J].Cell,2003,112(5):645-657.DOI: 10.1016/s0092-8674(03)00154-5.
    [19] CaiYX,ChenKL,LiuCS,et al.Harnessing strategies for enhancing diabetic wound healing from the perspective of spatial inflammation patterns[J].Bioact Mater,2023,28:243-254.DOI: 10.1016/j.bioactmat.2023.04.019.
    [20] FengC,ShanMJ,XiaYJ,et al.Single-cell RNA sequencing reveals distinct immunology profiles in human keloid[J].Front Immunol,2022,13:940645.DOI: 10.3389/fimmu.2022.940645.
    [21] SeoudyWM,Mohy El DienSM,Abdel ReheemTA,et al.Macrophages of the M1 and M2 types play a role in keloids pathogenesis[J].Int Wound J,2023,20(1):38-45.DOI: 10.1111/iwj.13834.
    [22] XieJ,WuXW,ZhengS,et al.Aligned electrospun poly(L-lactide) nanofibers facilitate wound healing by inhibiting macrophage M1 polarization via the JAK-STAT and NF-κB pathways[J].J Nanobiotechnology,2022,20(1):342.DOI: 10.1186/s12951-022-01549-9.
    [23] SiWX,XieW,DengWB,et al.Angiotensin Ⅱ increases angiogenesis by NF-κB-mediated transcriptional activation of angiogenic factor AGGF1[J].FASEB J,2018,32(9):5051-5062.DOI: 10.1096/fj.201701543RR.
    [24] TabruynSP,GriffioenAW.NF-kappa B: a new player in angiostatic therapy[J].Angiogenesis,2008,11(1):101-106.DOI: 10.1007/s10456-008-9094-4.
    [25] ZhouX,GuoYL,YangK,et al.The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing[J].J Ethnopharmacol,2022,282:114662.DOI: 10.1016/j.jep.2021.114662.
    [26] ZhangJW,WuXQ,MaJD,et al.Hypoxia and hypoxia-inducible factor signals regulate the development, metabolism, and function of B cells[J].Front Immunol,2022,13:967576.DOI: 10.3389/fimmu.2022.967576.
    [27] ChenYL,GaberT.Hypoxia/HIF modulates immune responses[J].Biomedicines,2021,9(3):260.DOI: 10.3390/biomedicines9030260.
    [28] ZhangZH,HuangYX,ZhangJW,et al.Activation of NF-κB signaling pathway during HCG-induced VEGF expression in luteal cells[J].Cell Biol Int,2019,43(3):344-349.DOI: 10.1002/cbin.11090.
    [29] XuXW,GuSC,HuangX,et al.The role of macrophages in the formation of hypertrophic scars and keloids[J/OL].Burns Trauma,2020,8:tkaa006[2024-01-11]. https://pubmed.ncbi.nlm.nih.gov/32341919/.DOI: 10.1093/burnst/tkaa006.
    [30] SalehK,StrömdahlAC,RiesbeckK, et al.Inflammation biomarkers and correlation to wound status after full-thickness skin grafting[J].Front Med (Lausanne),2019,6:159.DOI: 10.3389/fmed.2019.00159.
    [31] ČomaM,FröhlichováL,UrbanL, et al.Molecular changes underlying hypertrophic scarring following burns involve specific deregulations at all wound healing stages (inflammation, proliferation and maturation)[J].Int J Mol Sci,2021,22(2):897.DOI: 10.3390/ijms22020897.
    [32] LeiR,LiJ,LiuF,et al.HIF-1α promotes the keloid development through the activation of TGF-β/Smad and TLR4/MyD88/NF-κB pathways[J].Cell Cycle,2019,18(23):3239-3250.DOI: 10.1080/15384101.2019.1670508.
    [33] QiuZK,ZhangMZ,ZhangWC,et al.Role of HIF-1α in pathogenic mechanisms of keloids[J].J Cosmet Dermatol,2023,22(5):1436-1448.DOI: 10.1111/jocd.15601.
    [34] HongYK,ChangYH,LinYC, et al.Inflammation in wound healing and pathological scarring[J].Adv Wound Care (New Rochelle),2023,12(5):288-300.DOI: 10.1089/wound.2021.0161.
    [35] LeeSY,KimEK,SeoHB, et al.IL-17 induced stromal cell-derived factor-1 and profibrotic factor in keloid-derived skin fibroblasts via the STAT3 pathway[J].Inflammation,2020,43(2):664-672.DOI: 10.1007/s10753-019-01148-1.
    [36] DingN,WeiB,FuXH,et al.Natural products that target the NLRP3 inflammasome to treat fibrosis[J].Front Pharmacol,2020,11:591393.DOI: 10.3389/fphar.2020.591393.
    [37] 周正杰,李鑫.信使RNA药物修饰及其递送系统研究进展[J].浙江大学学报(医学版),2023,52(4):439-450.DOI: 10.3724/zdxbyxb-2023-0101.
    [38] ZhaoF,LangHX,WangZ, et al.Human novel microRNA seq-915_x4024 in keratinocytes contributes to skin regeneration by suppressing scar formation[J].Mol Ther Nucleic Acids,2019,14:410-423.DOI: 10.1016/j.omtn.2018.12.016.
    [39] WellsJA,KumruK.Extracellular targeted protein degradation: an emerging modality for drug discovery[J].Nat Rev Drug Discov,2024,23(2):126-140.DOI: 10.1038/s41573-023-00833-z.
    [40] YangJY,RuanYY,WangD,et al.VHL-recruiting PROTAC attenuates renal fibrosis and preserves renal function via simultaneous degradation of Smad3 and stabilization of HIF-2α[J].Cell Biosci,2022,12(1):203.DOI: 10.1186/s13578-022-00936-x.
    [41] WangW,LiuY,XiongLL,et al.Synthesis of lathyrol PROTACs and evaluation of their anti-inflammatory activities[J].J Nat Prod,2023,86(4):767-781.DOI: 10.1021/acs.jnatprod.2c00912.
    [42] JoshiM,DeyP,DeA.Recent advancements in targeted protein knockdown technologies-emerging paradigms for targeted therapy[J].Explor Target Antitumor Ther,2023,4(6):1227-1248.DOI: 10.37349/etat.2023.00194.
    [43] KannanMP,SreeramanS,SomalaCS,et al.Advancement of targeted protein degradation strategies as therapeutics for undruggable disease targets[J].Future Med Chem,2023,15(10):867-883.DOI: 10.4155/fmc-2023-0072.
  • 加载中
图(1)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  37
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-11

目录

    /

    返回文章
    返回