留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蛋白质组学分析揭示ADSC对糖尿病大鼠全层皮肤缺损的作用及其机制

顾媛 陈远征 王淑裕 宋宏业 白南

顾媛, 陈远征, 王淑裕, 等. 基于蛋白质组学分析揭示ADSC对糖尿病大鼠全层皮肤缺损的作用及其机制[J]. 中华烧伤与创面修复杂志, 2026, 42(1): 91-100. DOI: 10.3760/cma.j.cn501225-20240617-00236.
引用本文: 顾媛, 陈远征, 王淑裕, 等. 基于蛋白质组学分析揭示ADSC对糖尿病大鼠全层皮肤缺损的作用及其机制[J]. 中华烧伤与创面修复杂志, 2026, 42(1): 91-100. DOI: 10.3760/cma.j.cn501225-20240617-00236.
Gu Y,Chen YZ,Wang SY,et al.Proteomics analysis of the effect and mechanism of ADSCs on full-thickness skin defects in diabetic rats[J].Chin J Burns Wounds,2026,42(1):91-100.DOI: 10.3760/cma.j.cn501225-20240617-00236.
Citation: Gu Y,Chen YZ,Wang SY,et al.Proteomics analysis of the effect and mechanism of ADSCs on full-thickness skin defects in diabetic rats[J].Chin J Burns Wounds,2026,42(1):91-100.DOI: 10.3760/cma.j.cn501225-20240617-00236.

基于蛋白质组学分析揭示ADSC对糖尿病大鼠全层皮肤缺损的作用及其机制

doi: 10.3760/cma.j.cn501225-20240617-00236
基金项目: 

山东省自然科学基金面上项目 ZR2021MH338

详细信息
    通讯作者:

    白南,Email:cherrycrazy@163.com

Proteomics analysis of the effect and mechanism of ADSCs on full-thickness skin defects in diabetic rats

Funds: 

General Program of Shandong Natural Science Foundation ZR2021MH338

More Information
  • 摘要:   目的  基于蛋白质组学分析,探讨脂肪间充质干细胞(ADSC)对糖尿病大鼠全层皮肤缺损的作用及其机制。  方法  该研究为自身对照设计实验研究。取4只8~10周龄雄性SD大鼠,从其附睾脂肪组织中提取ADSC并成功鉴定,然后取第3代ADSC用于下述实验。取24只4~6周龄雄性SD大鼠并成功构建2型糖尿病模型,选取其中体重为350~400 g的16只糖尿病大鼠,在其背部脊柱两侧同一水平位置各制作1个全层皮肤缺损创面。采用随机数字表法,将每只大鼠的2个创面分别纳入实验组与对照组(每组16个创面),伤后即刻,于创面周围及基底组织分别多点注射含ADSC的细胞悬液和磷酸盐缓冲液。计算大鼠伤后7、10、14 d创面愈合率。大鼠伤后7 d,取创面组织并提取蛋白质,采用四维数据非依赖采集非标记定量蛋白质谱技术行定量蛋白质组学分析及生物信息学分析,筛选2组创面组织中的差异表达蛋白(DEP)。然后通过蛋白质-蛋白质相互作用网络筛选出关键DEP,并应用基因本体论(GO)行功能注释及富集分析、京都基因和基因组百科全书(KEGG)行通路富集分析,同时进一步筛选目标DEP。取大鼠伤后7 d创面组织,采用蛋白质印迹法检测胸腺细胞分化抗原-1(Thy-1)和G蛋白偶联受体177/Wnt配体分泌介质(GPR177/Wls)的蛋白表达量。  结果  大鼠伤后7、10、14 d,实验组创面愈合率分别为(66±16)%、(83±8)%、(93±4)%,均显著高于对照组的(30±8)%、(62±6)%、(77±8)%,t值分别为-4.41、-7.46、-6.65,P<0.05。大鼠伤后7 d,相较于对照组,从实验组创面组织中共筛选出474个DEP(P<0.05)。进一步筛选出224个关键DEP,其中78个DEP显著上调,146个DEP显著下调。GO功能注释分析显示,显著上调和显著下调的DEP主要在细胞过程和生物调控的条件下影响蛋白质的表达,与细胞解剖实体和含蛋白质复合物有关,与生物分子之间的特异性结合和催化活性有关。GO功能富集分析显示,首要的DEP(显著上调)显著富集于Wnt-蛋白结合。KEGG通路富集分析显示,显著上调和显著下调的DEP富集通路包括淀粉和蔗糖代谢、核苷酸代谢、p53信号通路、细胞外基质-受体相互作用等。共筛选出4个目标蛋白:Thy-1、GPR177/Wls、FCH结构域蛋白2、线粒体核糖体蛋白L21,前两者为显著上调DEP,后两者为显著下调DEP。大鼠伤后7 d,实验组创面组织中GPR177/Wls和Thy-1的蛋白表达量分别为0.93±0.07、0.96±0.05,均显著高于对照组的0.39±0.07、0.36±0.12(t值分别为11.61、9.41,P<0.05)。  结论  基于蛋白质组学分析,揭示了大鼠ADSC能通过上调GPR177/Wls和Thy-1的蛋白表达量促进糖尿病大鼠全层皮肤缺损创面愈合。

     

  • 参考文献(40)

    [1] NitzanO, EliasM, ChazanB, et al. Urinary tract infections in patients with type 2 diabetes mellitus: review of prevalence, diagnosis, and management[J]. Diabetes Metab Syndr Obes, 2015,8:129-136. DOI: 10.2147/DMSO.S51792.
    [2] AschnerP, KarurangaS, JamesS, et al. The International Diabetes Federation's guide for diabetes epidemiological studies[J]. Diabetes Res Clin Pract, 2021,172:108630. DOI: 10.1016/j.diabres.2020.108630.
    [3] 中国老年2型糖尿病防治临床指南编写组,中国老年医学学会老年内分泌代谢分会,中国老年保健医学研究会老年内分泌与代谢分会,等 .中国老年2型糖尿病防治临床指南(2022年版)[J|.中华内科杂志,2022,61(1):12-50. DOI: 10.3760/cma.j.cn112138-20211027-00751.
    [4] LiuH, LiZ, ZhaoY, et al. Novel diabetic foot wound dressing based on multifunctional hydrogels with extensive temperature-tolerant, durable, adhesive, and intrinsic antibacterial properties[J]. ACS Appl Mater Interfaces, 2021,13(23):26770-26781. DOI: 10.1021/acsami.1c05514.
    [5] SchaperNC, van NettenJJ, ApelqvistJ, et al. Practical guidelines on the prevention and management of diabetes-related foot disease (IWGDF 2023 update)[J]. Diabetes Metab Res Rev, 2024,40(3):e3657. DOI: 10.1002/dmrr.3657.
    [6] JiangY, WangX, XiaL, et al. A cohort study of diabetic patients and diabetic foot ulceration patients in China[J]. Wound Repair Regen, 2015,23(2):222-230. DOI: 10.1111/wrr.12263.
    [7] ChoH, BlatchleyMR, DuhEJ, et al. Acellular and cellular approaches to improve diabetic wound healing[J]. Adv Drug Deliv Rev, 2019,146:267-288. DOI: 10.1016/j.addr.2018.07.019.
    [8] ArmstrongDG, SwerdlowMA, ArmstrongAA, et al. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer[J]. J Foot Ankle Res, 2020,13(1):16. DOI: 10.1186/s13047-020-00383-2.
    [9] KongD, ZhuangX, WangD, et al. Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus[J]. Clin Lab, 2014,60(12):1969-1976. DOI: 10.7754/clin.lab.2014.140305.
    [10] LeiL, ZhangX, MaoY, et al. Statin therapy and bone marrow CD34+ cell frequency in type 2 diabetes mellitus: a cross-sectional study[J]. Int J Cardiol, 2014,175(1):214-216. DOI: 10.1016/j.ijcard.2014.04.248.
    [11] QiuX, LiuJ, ZhengC, et al. Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis[J]. Cell Prolif, 2020,53(8):e12830. DOI: 10.1111/cpr.12830.
    [12] YangJ, ChenZ, PanD, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration[J]. Int J Nanomedicine, 2020,15:5911-5926. DOI: 10.2147/IJN.S249129.
    [13] MaT, FuB, YangX, et al. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing[J]. J Cell Biochem, 2019,120(6):10847-10854. DOI: 10.1002/jcb.28376.
    [14] XuF, XiangQ, HuangJ, et al. Exosomal miR-423-5p mediates the proangiogenic activity of human adipose-derived stem cells by targeting Sufu[J]. Stem Cell Res Ther, 2019,10(1):106. DOI: 10.1186/s13287-019-1196-y.
    [15] MaT, SunJ, ZhaoZ, et al. A brief review: adipose-derived stem cells and their therapeutic potential in cardiovascular diseases[J]. Stem Cell Res Ther, 2017,8(1):124. DOI: 10.1186/s13287-017-0585-3.
    [16] SavageN. Proteomics: high-protein research[J]. Nature, 2015,527(7576):S6-S7. DOI: 10.1038/527S6a.
    [17] WangN, ZhuF, ChenL, et al. Proteomics, metabolomics and metagenomics for type 2 diabetes and its complications[J]. Life Sci, 2018,212:194-202. DOI: 10.1016/j.lfs.2018.09.035.
    [18] WangX, GuH, QinD, et al. Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis[J]. Sci Rep, 2015,5:13721. DOI: 10.1038/srep13721.
    [19] FriedensteinAJ, ChailakhjanRK, LalykinaKS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells[J]. Cell Tissue Kinet, 1970,3(4):393-403. DOI: 10.1111/j.1365-2184.1970.tb00347.x.
    [20] CaplanAI. Mesenchymal stem cells: time to change the name![J]. Stem Cells Transl Med, 2017,6(6):1445-1451. DOI: 10.1002/sctm.17-0051.
    [21] ZukPA, ZhuM, AshjianP, et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell, 2002,13(12):4279-4295. DOI: 10.1091/mbc.e02-02-0105.
    [22] GentileP, GarcovichS. Advances in regenerative stem cell therapy in androgenic alopecia and hair loss: Wnt pathway, growth-factor, and mesenchymal stem cell signaling impact analysis on cell growth and hair follicle development[J]. Cells, 2019, 8(5):466. DOI: 10.3390/cells8050466.
    [23] 白晓智,陶克,刘洋,等. 人脂肪间充质干细胞外泌体对脓毒症小鼠急性肺损伤的影响及其机制[J]. 中华烧伤与创面修复杂志,2024,40(12):1132-1142. DOI: 10.3760/cma.j.cn501225-20240927-00355.
    [24] MaziniL, RochetteL, AdmouB, et al. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing[J]. Int J Mol Sci, 2020,21(4):1306. DOI: 10.3390/ijms21041306.
    [25] BariE, SilvestreDD, MastracciL, et al. GMP-compliant sponge-like dressing containing MSC lyo-secretome: proteomic network of healing in a murine wound model[J]. Eur J Pharm Biopharm, 2020,155:37-48. DOI: 10.1016/j.ejpb.2020.08.003.
    [26] 姜敏敏. MSC与成纤维细胞的增殖及分化在创面愈合中的作用及其机制研究[D/OL].重庆:第三军医大学,2015[2024-06-17]. https://wap.cnki.net/touch/web/Dissertation/Article/1016042800.nh.html. https://wap.cnki.net/touch/web/Dissertation/Article/1016042800.nh.html
    [27] OuyangX, HanX, ChenZ, et al. Correction: MSC-derived exosomes ameliorate erectile dysfunction by alleviation of corpus cavernosum smooth muscle apoptosis in a rat model of cavernous nerve injury[J]. Stem Cell Res Ther, 2022,13(1):508. DOI: 10.1186/s13287-022-03190-7.
    [28] YuB, ShaoH, SuC, et al. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1[J]. Sci Rep, 2016,6:34562. DOI: 10.1038/srep34562.
    [29] LorenowiczMJ, KorswagenHC. Sailing with the Wnt: charting the Wnt processing and secretion route[J]. Exp Cell Res, 2009,315(16):2683-2689. DOI: 10.1016/j.yexcr.2009.06.015.
    [30] NusseR, CleversH. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017,169(6):985-999. DOI: 10.1016/j.cell.2017.05.016.
    [31] KorenE, FeldmanA, YusupovaM, et al. Thy1 marks a distinct population of slow-cycling stem cells in the mouse epidermis[J]. Nat Commun, 2022,13(1):4628. DOI: 10.1038/s41467-022-31629-1.
    [32] AnZ, SabalicM, BloomquistRF, et al. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors[J]. Nat Commun, 2018,9(1):378. DOI: 10.1038/s41467-017-02785-6.
    [33] GargettCE. Identification and characterisation of human endometrial stem/progenitor cells[J]. Aust N Z J Obstet Gynaecol, 2006,46(3):250-253. DOI: 10.1111/j.1479-828X.2006.00582.x.
    [34] YovchevMI, GrozdanovPN, ZhouH, et al. Identification of adult hepatic progenitor cells capable of repopulating injured rat liver[J]. Hepatology, 2008,47(2):636-647. DOI: 10.1002/hep.22047.
    [35] SedovE, KorenE, ChopraS, et al. THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair[J]. Nat Cell Biol, 2022,24(7):1049-1063. DOI: 10.1038/s41556-022-00944-6.
    [36] Mendoza-ReinosoV, BeverdamA. Epidermal YAP activity drives canonical WNT16/β-catenin signaling to promote keratinocyte proliferation in vitro and in the murine skin[J]. Stem Cell Res, 2018,29:15-23. DOI: 10.1016/j.scr.2018.03.005.
    [37] NygaardR, YuJ, KimJ, et al. Structural basis of WLS/Evi-mediated Wnt transport and secretion[J]. Cell, 2021,184(1):194-206.e14. DOI: 10.1016/j.cell.2020.11.038.
    [38] HausmannG, BänzigerC, BaslerK. Helping Wingless take flight: how WNT proteins are secreted[J]. Nat Rev Mol Cell Biol, 2007,8(4):331-336. DOI: 10.1038/nrm2141.
    [39] MichauxG, BorgneRL. Sorting, recycling and WNT signaling: Wntless and retromer functions[J]. Med Sci (Paris), 2009,25(6/7):617-621. DOI: 10.1051/medsci/2009256-7617.
    [40] Franch-MarroX, WendlerF, GuidatoS, et al. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex[J]. Nat Cell Biol, 2008,10(2):170-177. DOI: 10.1038/ncb1678.
  • 图  1  大鼠脂肪间充质干细胞的形态及其分化能力鉴定 倒置显微镜 ×200。1A.原代细胞培养7 d后呈旋涡状排列;1B.成脂诱导培养21 d后细胞内可见红色脂滴 油红O;1C.成骨诱导培养21 d后细胞内可见红色或橘红色沉淀物 茜素红S

    图  2  糖尿病大鼠伤后各时间点2组全层皮肤缺损创面的愈合情况。2A、2B、2C、2D、2E.分别为大鼠伤后0(即刻)、3、7、10、14 d对照组创面;2F、2G、2H、2I、2J.分别为大鼠伤后0、3、7、10、14 d实验组创面,图2H、2I、2J的创面面积分别明显小于图2C、2D、2E

    注:大鼠实验组、对照组创面分别注射含大鼠脂肪间充质干细胞的细胞悬液和等量磷酸盐缓冲液

    图  3  糖尿病大鼠伤后7 d的2组全层皮肤缺损创面的蛋白质样本的相关性分析。3A.主成分分析;3B.热图

    注:大鼠实验组、对照组创面分别注射含大鼠脂肪间充质干细胞的细胞悬液和等量磷酸盐缓冲液;图3A中的横坐标代表数据中方差最大的方向,其单独解释了约31.90%的数据变异,是降维后的核心指标;纵坐标代表数据中方差次大的方向,其对原始数据总方差的解释贡献率为28.00%;各个样本点之间的距离代表了样本间的相似程度,距离越短表明样本间相似性越高;图3B中的纵坐标和横坐标上的A1、A2、A3、A4和P1、P2、P3分别指实验组的4个样本和对照组的3个样本;不同颜色代表样本间相关系数的大小,红色越深代表2个样本间相关性越大,蓝色越深代表2个样本间相关性越小

    图  4  糖尿病大鼠伤后7 d的2组全层皮肤缺损创面组织中差异表达蛋白的聚类热图和火山图。4A.聚类热图;4B.火山图

    注:大鼠实验组、对照组创面分别注射含大鼠脂肪间充质干细胞的细胞悬液和等量磷酸盐缓冲液;图4A中横坐标上的A1、A2、A3、A4和P1、P2、P3分别指实验组的4个样本和对照组的3个样本;上方为样本聚类的树状图,2个样本分支之间的距离越近则其蛋白质的表达模式越接近;左侧为蛋白质聚类的树状图,2个蛋白质分支之间的距离越近则其表达量越接近;图4B中绿色点为实验组较对照组显著上调的蛋白,蓝色点为实验组较对照组显著下调的蛋白,灰色点为实验组较对照组无显著变化的蛋白

    图  5  糖尿病大鼠伤后7 d的2组全层皮肤缺损创面组织中的差异表达蛋白的GO功能注释及富集分析和KEGG通路富集分析。5A.GO功能注释分析;5B.GO功能富集分析(样本数为4);5C.KEGG通路富集分析(样本数为4)

    注:大鼠实验组、对照组创面分别注射含大鼠脂肪间充质干细胞的细胞悬液和等量磷酸盐缓冲液;图5A中横坐标从左至右对应富集条目为细胞过程、生物调控、代谢过程、对刺激的反应、发育过程、定位、多细胞生物过程、免疫系统过程、涉及相互作用的生物过程、生殖过程、信号转导,细胞解剖实体、含蛋白质复合物,特异性结合、催化活性、分子功能调节活性、转运蛋白活性、结构分子活性、分子转导活性、分子接头活性;ECM为细胞外基质,PD-1为程序性死亡受体1,PD-L1为程序性死亡配体1,AGE-RAGE为晚期糖基化终末产物-晚期糖基化终末产物受体,GO为基因本体论,KEGG为京都基因和基因组百科全书

    图  6  蛋白质印迹法检测的糖尿病大鼠伤后7 d的2组全层皮肤缺损创面组织中Thy-1和GPR177/Wls的蛋白表达

    注:大鼠实验组、对照组创面分别注射含大鼠脂肪间充质干细胞的细胞悬液和等量磷酸盐缓冲液;1-1、2-1、3-1为实验组的3个样本;1-2、2-2、3-2为对照组的3个样本;Thy-1为胸腺细胞分化抗原-1,GPR177/Wls为G蛋白偶联受体177/Wnt配体分泌介质

    Table  1.   糖尿病大鼠2组全层皮肤缺损创面伤后各时间点的愈合率比较(%,x¯±s

    组别样本数3 d7 d10 d14 d
    对照组818±730±862±677±8
    实验组830±1166±1683±893±4
    t-2.21-4.41-7.46-6.65
    P0.063<0.001<0.0010.003
    注:大鼠实验组、对照组创面分别注射含大鼠脂肪间充质干细胞的细胞悬液和等量磷酸盐缓冲液;处理因素主效应,F=40.21,P<0.001;时间因素主效应,F=176.34,P<0.001;二者交互作用,F=8.17,P<0.001
    下载: 导出CSV
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  207
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-17

目录

    /

    返回文章
    返回