留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人真皮毛乳头细胞来源的细胞外囊泡对小鼠皮肤纤维化的影响及其机制

王运帷 蔡飞宇 石傲 康宇晨 赵若梅 胡智瀚 邸晓宇 刘毅

王运帷, 蔡飞宇, 石傲, 等. 人真皮毛乳头细胞来源的细胞外囊泡对小鼠皮肤纤维化的影响及其机制[J]. 中华烧伤与创面修复杂志, 2025, 41(6): 559-568. Doi: 10.3760/cma.j.cn501225-20240925-00348
引用本文: 王运帷, 蔡飞宇, 石傲, 等. 人真皮毛乳头细胞来源的细胞外囊泡对小鼠皮肤纤维化的影响及其机制[J]. 中华烧伤与创面修复杂志, 2025, 41(6): 559-568. Doi: 10.3760/cma.j.cn501225-20240925-00348
Wang Yunwei, Cai Feiyu, Shi Ao, et al. Influence and mechanism of extracellular vesicles derived from human dermal papilla cells on skin fibrosis in mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2025, 41(6): 559-568. Doi: 10.3760/cma.j.cn501225-20240925-00348
Citation: Wang Yunwei, Cai Feiyu, Shi Ao, et al. Influence and mechanism of extracellular vesicles derived from human dermal papilla cells on skin fibrosis in mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2025, 41(6): 559-568. Doi: 10.3760/cma.j.cn501225-20240925-00348

人真皮毛乳头细胞来源的细胞外囊泡对小鼠皮肤纤维化的影响及其机制

doi: 10.3760/cma.j.cn501225-20240925-00348
基金项目: 

国家自然科学基金地区科学基金项目 82360444

甘肃省高校产业支撑项目 2023CYZC-02

兰州大学第二医院萃英科技创新项目 CY2022-MS-A04

详细信息
    通讯作者:

    刘毅,Email:liuyi196402@163.com

Influence and mechanism of extracellular vesicles derived from human dermal papilla cells on skin fibrosis in mice

Funds: 

Regional Science Foundation Program of National Natural Science Foundation of China 82360444

Gansu Province University Industry Support Project 2023CYZC-02

Cuiying Technology Innovation Project of Lanzhou University Second Hospital CY2022-MS-A04

More Information
  • 摘要:   目的  探究人真皮毛乳头细胞(hDPC)来源的细胞外囊泡(hDPC-EV)对小鼠皮肤纤维化的影响及其机制。  方法  该研究为实验研究。收集2024年9月于兰州大学第二医院行毛发移植手术的2例分别为25、40岁的男性患者的100个废弃的毛囊单位,提取原代hDPC并成功鉴定。取第3~5代hDPC,培养后提取hDPC-EV并成功鉴定。采用实时荧光定量反转录PCR(RT-PCR)法检测hDPC和hDPC-EV中微小RNA-182-5p(miRNA-182-5p)的表达(样本数为4)。取30只6周龄雄性C57BL/6J小鼠,皮内注射博来霉素4周制作小鼠皮肤纤维化模型。采用随机数字表法(后续分组方法同此)选取6只造模后的小鼠,另取6只健康未处理6周龄雄性C57BL/6J小鼠,采用蛋白质印迹法检测小鼠正常皮肤组织与纤维化皮肤组织中转化生长因子β1(TGF-β1)的蛋白表达(样本数为3)。将剩余24只造模后的小鼠分为磷酸盐缓冲液(PBS)+miRNA模拟物对照组、细胞外囊泡(EV)+miRNA模拟物对照组、EV+miRNA抑制剂组、miRNA模拟物组(每组6只),分别于注射与组名相对应的试剂2周后,采用蛋白质印迹法检测纤维化皮肤组织中α-平滑肌肌动蛋白(α-SMA)和Ⅰ型胶原的蛋白表达(样本数为3),采用实时荧光定量RT-PCR法检测纤维化皮肤组织中miRNA-182-5p的表达和TGF-β1的mRNA表达(样本数为4)。取人增生性瘢痕成纤维细胞(HSF),分为miRNA-182-5p模拟物+野生型-TGF-β1组、miRNA-182-5p对照+野生型-TGF-β1组、miRNA-182-5p模拟物+突变型-TGF-β1组、miRNA-182-5p对照+突变型-TGF-β1组并转染相应质粒培养36 h后,行双荧光素酶报告基因实验检测miRNA-182-5p与TGF-β1的相互作用,以相对荧光素酶活性表示(样本数为5)。  结果  hDPC-EV中miRNA-182-5p的表达明显高于hDPC(t=5.48,P < 0.05)。与小鼠正常皮肤组织比较,小鼠纤维化皮肤组织中TGF-β1的蛋白表达升高。处理2周后,与PBS+miRNA模拟物对照组比较,EV+miRNA模拟物对照组小鼠纤维化皮肤组织中α-SMA、Ⅰ型胶原的蛋白表达均明显降低(P < 0.05);与EV+miRNA模拟物对照组比较,EV+miRNA抑制剂组小鼠纤维化皮肤组织中α-SMA、Ⅰ型胶原的蛋白表达均明显升高(P < 0.05);与EV+miRNA抑制剂组比较,miRNA模拟物组小鼠纤维化皮肤组织中α-SMA、Ⅰ型胶原的蛋白表达均明显降低(P < 0.05)。处理2周后,与EV+miRNA模拟物对照组比较,PBS+miRNA模拟物对照组和EV+miRNA抑制剂组小鼠纤维化皮肤组织中miRNA-182-5p表达均明显降低(P < 0.05)而TGF-β1的mRNA表达均明显升高(P < 0.05);与EV+miRNA抑制剂组比较,PBS+miRNA模拟物对照组小鼠纤维化皮肤组织中miRNA-182-5p表达明显升高(P < 0.05),miRNA模拟物组小鼠纤维化皮肤组织中miRNA-182-5p表达明显升高(P < 0.05)而TGF-β1的mRNA表达明显降低(P < 0.05)。培养36 h后,miRNA-182-5p模拟物+野生型-TGF-β1组HSF的相对荧光素酶活性为0.594±0.019,明显低于miRNA-182-5p对照+野生型-TGF-β1组的1.000±0.153(t=5.87,P < 0.05);miRNA-182-5p模拟物+突变型-TGF-β1组HSF的相对荧光素酶活性为0.911±0.085,与miRNA-182-5p对照+突变型-TGF-β1组的0.934±0.027比较,差异无统计学意义(P > 0.05)。表明miRNA-182-5p可靶向调控TGF-β1  结论  hDPC-EV可通过递送miRNA-182-5p靶向抑制TGF-β1信号通路来减轻博来霉素诱导的小鼠皮肤纤维化。

     

    本文亮点
    (1) 揭示人真皮毛乳头细胞来源的细胞外囊泡(hDPC-EV)通过递送微小RNA-182-5p靶向抑制转化生长因子β1信号通路,减轻博来霉素诱导的小鼠皮肤纤维化。
    (2) 证实hDPC-EV中的微小RNA-182-5p可抑制皮肤纤维化标志物的表达,为毛囊来源干细胞在体应用提供新靶点。
  • 参考文献(40)

    [1] Edwards J. Hypertrophic scar management[J]. Br J Nurs, 2022, 31(20): S24-S31. DOI: 10.12968/bjon.2022.31.20.S24.
    [2] Jung BK, Roh TS, Roh H, et al. Effect of mortalin on scar formation in human dermal fibroblasts and a rat incisional scar model[J]. Int J Mol Sci, 2022, 23(14): 7918. DOI: 10.3390/ijms23147918.
    [3] 王运帷, 罗亮, 曹鹏, 等. 真皮毛乳头细胞分离培养技术的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2022, 17(6): 520-523. DOI: 10.3877/cma.j.issn.1673-9450.2022.06.010.
    [4] Wang YW, Shen K, Sun YL, et al. Extracellular vesicles from 3D cultured dermal papilla cells improve wound healing via Krüppel-like factor 4/vascular endothelial growth factor A -driven angiogenesis[J/OL]. Burns Trauma, 2023, 11: tkad034[2024-09-25]. https://pubmed.ncbi.nlm.nih.gov/37908562/. DOI: 10.1093/burnst/tkad034.
    [5] 王运帷, 张浩, 曹鹏, 等. 小鼠真皮毛乳头细胞外囊泡对人增生性瘢痕成纤维细胞的影响及其机制[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 258-265. DOI: 10.3760/cma.j.cn501225-20231107-00185.
    [6] Wang J, Barr MM, Wehman AM. Extracellular vesicles[J]. Genetics, 2024, 227(4): iyae088. DOI: 10.1093/genetics/iyae088.
    [7] Ramírez-Hernández AA, Velázquez-Enríquez JM, Santos-Álvarez JC, et al. The role of extracellular vesicles in idiopathic pulmonary fibrosis progression: an approach on their therapeutics potential[J]. Cells, 2022, 11(4): 630. DOI: 10.3390/cells11040630.
    [8] Xiao T, Meng W, Jin Z, et al. miR-182-5p promotes hepatocyte-stellate cell crosstalk to facilitate liver regeneration[J]. Commun Biol, 2022, 5(1): 771. DOI: 10.1038/s42003-022-03714-0.
    [9] 曹鹏, 王运帷, 官浩, 等. 机械张力对兔耳增生性瘢痕的形成及转化生长因子β1/Smad信号通路的影响[J]. 中华烧伤与创面修复杂志, 2022, 38(12): 1162-1169. DOI: 10.3760/cma.j.cn501120-20211213-00412.
    [10] Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: from bench-to-bedside, intricacies, and complexities[J]. Cell Biol Int, 2024, 48(2): 87-127. DOI: 10.1002/cbin.12097.
    [11] Topouzi H, Logan NJ, Williams G, et al. Methods for the isolation and 3D culture of dermal papilla cells from human hair follicles[J]. Exp Dermatol, 2017, 26(6): 491-496. DOI: 10.1111/exd.13368.
    [12] 王运帷. 新型三维真皮毛乳头细胞外囊泡对皮肤创面愈合的作用与机制研究[D]. 西安: 空军军医大学, 2023.
    [13] Xu C, Zhang H, Yang C, et al. miR-125b-5p delivered by adipose-derived stem cell exosomes alleviates hypertrophic scarring by suppressing Smad2[J/OL]. Burns Trauma, 2024, 12: tkad064[2024-09-25]. https://pubmed.ncbi.nlm.nih.gov/38765787/. DOI: 10.1093/burnst/tkad064.
    [14] Zheng X, Huang M, Xing L, et al. The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer[J]. Mol Cancer, 2020, 19(1): 73. DOI: 10.1186/s12943-020-01183-9.
    [15] Atiyeh BS. Nonsurgical management of hypertrophic scars: evidence-based therapies, standard practices, and emerging methods[J]. Aesthetic Plast Surg, 2020, 44(4): 1320-1344. DOI: 10.1007/s00266-020-01820-0.
    [16] Yuan B, Upton Z, Leavesley D, et al. Vascular and collagen target: a rational approach to hypertrophic scar management[J]. Adv Wound Care (New Rochelle), 2023, 12(1): 38-55. DOI: 10.1089/wound.2020.1348.
    [17] Hameedi SG, Saulsbery A, Olutoye OO. The pathophysiology and management of pathologic scarring-a contemporary review[J]. Adv Wound Care (New Rochelle), 2025, 14(1): 48-64. DOI: 10.1089/wound.2023.0185.
    [18] 周圳滔, 赵沁园, 赵钧, 等. 毛囊及相关干细胞在创面无瘢痕愈合中的研究进展[J]. 中国修复重建外科杂志, 2021, 35(2): 241-245. DOI: 10.7507/1002-1892.202005086.
    [19] Rippa AL, Kalabusheva EP, Vorotelyak EA. Regeneration of dermis: scarring and cells involved[J]. Cells, 2019, 8(6): 607. DOI: 10.3390/cells8060607.
    [20] Qi SH, Liu P, Xie JL, et al. Experimental study on repairing of nude mice skin defects with composite skin consisting of xenogeneic dermis and epidermal stem cells and hair follicle dermal papilla cells[J]. Burns, 2008, 34(3): 385-392. DOI: 10.1016/j.burns.2007.04.003.
    [21] Leirós GJ, Kusinsky AG, Drago H, et al. Dermal papilla cells improve the wound healing process and generate hair bud-like structures in grafted skin substitutes using hair follicle stem cells[J]. Stem Cells Transl Med, 2014, 3(10): 1209-1219. DOI: 10.5966/sctm.2013-0217.
    [22] 石傲, 王运帷, 康宇晨, 等. 水凝胶促进创面血管化的研究进展[J]. 中华烧伤与创面修复杂志, 2025, 41(3): 295-300. DOI: 10.3760/cma.j.cn501225-20240521-00193.
    [23] Yin S, Zhou S, Ren D, et al. Mesenchymal stem cell-derived exosomes attenuate epithelial-mesenchymal transition of HK-2 cells[J]. Tissue Eng Part A, 2022, 28(13/14): 651-659. DOI: 10.1089/ten.TEA.2021.0190.
    [24] Cecchin R, Troyer Z, Witwer K, et al. Extracellular vesicles: the next generation in gene therapy delivery[J]. Mol Ther, 2023, 31(5): 1225-1230. DOI: 10.1016/j.ymthe.2023.01.021.
    [25] Zhang X, Zhang H, Gu J, et al. Engineered extracellular vesicles for cancer therapy[J]. Adv Mater, 2021, 33(14): e2005709. DOI: 10.1002/adma.202005709.
    [26] Egal E, Kamdem SD, Yoshigi M, et al. EphB2 receptor promotes dermal fibrosis in systemic sclerosis[J]. Arthritis Rheumatol, 2024, 76(8): 1303-1316. DOI: 10.1002/art.42858.
    [27] 李超. 曲安奈德联合5-氟尿嘧啶对博来霉素诱导小鼠增生性瘢痕的实验研究[D]. 延吉: 延边大学, 2022.
    [28] 周思政. 皮肤创伤愈合和增生性瘢痕动物模型的研究进展[J]. 组织工程与重建外科杂志, 2018, 14(1): 48-52. DOI: 10.3969/j.issn.1673-0364.2018.01.013.
    [29] Wang J, Zhao M, Zhang H, et al. KLF4 alleviates hypertrophic scar fibrosis by directly activating BMP4 transcription[J]. Int J Biol Sci, 2022, 18(8): 3324-3336. DOI: 10.7150/ijbs.71167.
    [30] Li Y, Zhang J, Shi J, et al. Correction to: exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis[J]. Stem Cell Res Ther, 2021, 12(1): 490. DOI: 10.1186/s13287-021-02568-3.
    [31] 贺伟峰, 吴军, 罗高兴, 等. 增生性瘢痕组织和正常皮肤来源成纤维细胞的差异蛋白质组学研究[G]. 漳州: 第十届全国烧伤救治专题研讨会暨福建省第八次烧伤外科学术研讨会, 2013.
    [32] Wu B, Feng J, Guo J, et al. ADSCs-derived exosomes ameliorate hepatic fibrosis by suppressing stellate cell activation and remodeling hepatocellular glutamine synthetase-mediated glutamine and ammonia homeostasis [J]. Stem Cell Res Ther, 2022, 13(1): 494. DOI: 10.1186/s13287-022-03049-x.
    [33] Hwangbo C, Tae N, Lee S, et al. Syntenin regulates TGF-β1-induced Smad activation and the epithelial-to-mesenchymal transition by inhibiting caveolin-mediated TGF-β type Ⅰ receptor internalization[J]. Oncogene, 2016, 35(3): 389-401. DOI: 10.1038/onc.2015.100.
    [34] Zheng Z, Zhang XL, Dang C, et al. Fibromodulin is essential for fetal-type scarless cutaneous wound healing[J]. Am J Pathol, 2016, 186(11): 2824-2832. DOI: 10.1016/j.ajpath.2016.07.023.
    [35] Chen L, Li J, Li Q, et al. Non-coding RNAs: the new insight on hypertrophic scar[J]. J Cell Biochem, 2017, 118(8): 1965-1968. DOI: 10.1002/jcb.25873.
    [36] Yu F, Liu Z, Feng J, et al. Hyaluronic acid modified extracellular vesicles targeting hepatic stellate cells to attenuate hepatic fibrosis[J]. Eur J Pharm Sci, 2024, 198: 106783. DOI: 10.1016/j.ejps.2024.106783.
    [37] Nosalski R, Siedlinski M, Denby L, et al. T-cell-derived miRNA-214 mediates perivascular fibrosis in hypertension [J]. Circ Res, 2020, 126(8): 988-1003. DOI: 10.1161/CIRCRESAHA.119.315428.
    [38] Zou A, Liu P, Liu T, et al. Long non-coding RNA HOXA11-AS contributes to the formation of keloid by relieving the inhibition of miR-182-5p on ZNF217[J]. Burns, 2023, 49(5): 1157-1169. DOI: 10.1016/j.burns.2022.07.010.
    [39] Xu Q, Miao Y, Ren J, et al. Silencing of Nesprin-2 inhibits the differentiation of myofibroblasts from fibroblasts induced by mechanical stretch[J]. Int Wound J, 2022, 19(5): 978-986. DOI: 10.1111/iwj.13694.
    [40] Chen Y, Zhang Q, Zhou Y, et al. Inhibition of miR-182-5p attenuates pulmonary fibrosis via TGF-β/Smad pathway[J]. Hum Exp Toxicol, 2020, 39(5): 683-695. DOI: 10.1177/0960327119895549.
  • 图  1  hDPC-EV的鉴定。1A.hDPC-EV为盘状囊泡结构 透射电子显微镜×40 000;1B.hDPC-EV平均粒径为142.91 nm;1C.hDPC-EV的囊泡阳性标志物TSG101、CD63、CD9阳性,阴性标志物钙联蛋白阴性

    注:hDPC-EV为人真皮毛乳头细胞来源的细胞外囊泡,TSG101为肿瘤易感基因101;条带上方1、2分别指示hDPC-EV、人真皮毛乳头细胞

    Figure  1.  Identification of hDPC-EVs

    图  2  高通量测序检测的人真皮毛乳头细胞来源的细胞外囊泡中miRNA的丰度(%)

    注:miRNA为微小RNA;其他miRNA为丰度 < 1%的miRNA

    Figure  2.  The abundance of miRNAs in extracellular vesicles derived from human dermal papilla cells detected by high-throughput sequencing

    图  3  蛋白质印迹法检测的小鼠正常皮肤组织和纤维化皮肤组织中TGF-β1的蛋白表达

    注:TGF-β1为转化生长因子β1,GAPDH为3-磷酸甘油醛脱氢酶;条带上方1、2分别指示行博来霉素注射4周的小鼠的纤维化皮肤组织和未行博来霉素注射的小鼠的正常皮肤组织

    Figure  3.  The protein expression of TGF-β1 in normal skin tissue and fibrotic skin tissue of mice detected by Western blotting

    图  4  4组皮肤纤维化小鼠处理2周后纤维化皮肤组织病理学和胶原沉积情况。4A、4B、4C、4D.分别为PBS+miRNA模拟物对照组、EV+miRNA抑制剂组、EV+miRNA模拟物对照组、miRNA模拟物组小鼠纤维化皮肤组织,图4A和图4B中皮肤附属器缺乏,图4C和图4D中皮肤附属器丰富 苏木精-伊红×40;4E、4F、4G、4H.分别为PBS+miRNA模拟物对照组、EV+miRNA抑制剂组、EV+miRNA模拟物对照组、miRNA模拟物组小鼠纤维化皮肤组织,图4E和图4F中胶原大量沉积、纤维排列紊乱,图4G和图4H中胶原沉积良好、纤维排列趋于正常 Masson×40

    注:对磷酸盐缓冲液(PBS)+微小RNA(miRNA)模拟物对照组、细胞外囊泡(EV)+miRNA抑制剂组、EV+miRNA模拟物对照组、miRNA模拟物组小鼠分别注射PBS+miRNA模拟物对照、人真皮毛乳头细胞来源的EV(hDPC-EV)+miRNA-182-5p抑制剂、hDPC-EV+miRNA模拟物对照、miRNA-182-5p模拟物

    Figure  4.  Histopathology and collagen deposition in the fibrotic skin tissue of 4 groups of mice with skin fibrosis after 2 weeks of treatment

    图  5  蛋白质印迹法检测的4组皮肤纤维化小鼠处理2周后纤维化皮肤组织中α-SMA和Ⅰ型胶原的蛋白表达

    注:α-SMA为α-平滑肌肌动蛋白,GAPDH为3-磷酸甘油醛脱氢酶,条带上方1、2、3、4分别指示对小鼠注射磷酸盐缓冲液(PBS)+微小RNA(miRNA)模拟物对照、人真皮毛乳头细胞来源的细胞外囊泡(hDPC-EV)+miRNA模拟物对照、hDPC-EV+miRNA-182-5p抑制剂、miRNA-182-5p模拟物的PBS+miRNA模拟物对照组、细胞外囊泡(EV)+miRNA模拟物对照组、EV+miRNA抑制剂组、miRNA模拟物组

    Figure  5.  The protein expressions of α-SMA and type Ⅰ collagen in the fibrotic skin tissue of 4 groups of mice with skin fibrosis after 2 weeks of treatment detected by Western blotting

    表  1  4组皮肤纤维化小鼠处理2周后纤维化皮肤组织中miRNA-182-5p的表达和TGF-β1的mRNA表达(x ± s

    Table  1.   Expression of miRNA-182-5p and mRNA expression of TGF-β1 in the fibrotic skin tissue of 4 groups of mice with skin fibrosis after 2 weeks of treatment

    组别 样本数 miRNA-182-5p TGF-β1
    PBS+miRNA模拟物对照组 4 0.31±0.04 0.76±0.09
    EV+miRNA模拟物对照组 4 1.19±0.11 0.29±0.05
    EV+miRNA抑制剂组 4 0.13±0.06 0.88±0.08
    miRNA模拟物组 4 1.30±0.05 0.23±0.03
    F 289.00 118.60
    P < 0.001 < 0.001
    P1 < 0.001 < 0.001
    P2 < 0.001 < 0.001
    P3 0.021 0.115
    P4 < 0.001 < 0.001
    P5 0.119 0.085
    注:miRNA为微小RNA,TGF-β1为转化生长因子β1;对磷酸盐缓冲液(PBS)+miRNA模拟物对照组、细胞外囊泡(EV)+miRNA模拟物对照组、EV+miRNA抑制剂组、miRNA模拟物组小鼠分别注射PBS+miRNA模拟物对照、人真皮毛乳头细胞来源的EV(hDPC-EV)+miRNA模拟物对照、hDPC-EV+miRNA-182-5p抑制剂、miRNA-182-5p模拟物;F值、P值为组间各指标总体比较所得;P1值、P2值、P3值、P4值、P5值分别为PBS+miRNA模拟物对照组与EV+miRNA模拟物对照组、EV+miRNA模拟物对照组与EV+miRNA抑制剂组、EV+miRNA抑制剂组与PBS+miRNA模拟物对照组、miRNA模拟物组与EV+miRNA抑制剂组、miRNA模拟物组与EV+miRNA模拟物对照组各指标比较所得
    下载: 导出CSV
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  41
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-25

目录

    /

    返回文章
    返回