留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温大气压等离子体促进创面愈合的作用机制及临床应用研究进展

赵子越 蔡程浩 柳欢 刘舒雯 王新刚

赵子越, 蔡程浩, 柳欢, 等. 低温大气压等离子体促进创面愈合的作用机制及临床应用研究进展[J]. 中华烧伤与创面修复杂志, 2025, 41(6): 604-608. Doi: 10.3760/cma.j.cn501225-20241117-00448
引用本文: 赵子越, 蔡程浩, 柳欢, 等. 低温大气压等离子体促进创面愈合的作用机制及临床应用研究进展[J]. 中华烧伤与创面修复杂志, 2025, 41(6): 604-608. Doi: 10.3760/cma.j.cn501225-20241117-00448
Zhao Ziyue, Cai Chenghao, Liu Huan, et al. Research advances on the mechanism and clinical application of cold atmospheric plasma in promoting wound healing[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2025, 41(6): 604-608. Doi: 10.3760/cma.j.cn501225-20241117-00448
Citation: Zhao Ziyue, Cai Chenghao, Liu Huan, et al. Research advances on the mechanism and clinical application of cold atmospheric plasma in promoting wound healing[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2025, 41(6): 604-608. Doi: 10.3760/cma.j.cn501225-20241117-00448

低温大气压等离子体促进创面愈合的作用机制及临床应用研究进展

doi: 10.3760/cma.j.cn501225-20241117-00448
基金项目: 

国家重点研发计划项目 2022YFC2403100

国家自然科学基金面上项目 82172198

浙江省医药卫生科技计划项目 2020KY786

详细信息
    通讯作者:

    王新刚,Email:wangxingang8157@zju.edu.cn

Research advances on the mechanism and clinical application of cold atmospheric plasma in promoting wound healing

Funds: 

National Key Research and Development Program of China 2022YFC2403100

General Program of National Natural Science Foundation of China 82172198

Zhejiang Provincial Medical and Health Science and Technology Program 2020KY786

More Information
  • 摘要: 创面愈合是一个复杂的生物学过程,涉及多个阶段,包括止血、炎症、增殖和重塑。低温大气压等离子体(CAP)作为创面护理的一种高效、非侵入性的创新型疗法,在创面护理领域极具应用前景。研究表明,CAP可通过多种机制促进创面细胞增殖、降低创面的微生物负荷。通过综合分析国内外近年来关于CAP的生物学作用的文献,该文从作用机制和临床应用的角度综述了CAP如何促进急慢性创面的修复,以及近年来CAP在应用方式上的研究进展。

     

  • 参考文献(48)

    [1] 付小兵. 战时治烧伤, 平时治创面: 有关烧伤学科发展的一点思考[J]. 中华烧伤杂志, 2018, 34(7): 434-436. DOI: 10.3760/cma.j.issn.1009-2587.2018.07.002.
    [2] Sen CK. Human wound and its burden: updated 2022 compendium of estimates[J]. Adv Wound Care (New Rochelle), 2023, 12(12): 657-670. DOI: 10.1089/wound.2023.0150.
    [3] Minty E, Bray E, Bachus CB, et al. Preventative sensor-based remote monitoring of the diabetic foot in clinical practice [J]. Sensors (Basel), 2023, 23(15): 6712. DOI: 10.3390/s23156712.
    [4] Bhattacharjee B, Bezbaruah R, Rynjah D, et al. Cold atmospheric plasma: a noteworthy approach in medical science[J]. Sci Pharm, 2023, 2(2): 79-103. DOI: 10.58920/sciphar02020046.
    [5] Abdo AI, Kopecki Z. Comparing redox and intracellular signalling responses to cold plasma in wound healing and cancer[J]. Curr Issues Mol Biol, 2024, 46(5): 4885-4923. DOI: 10.3390/cimb46050294.
    [6] Broughton G, Janis JE, Attinger CE. Wound healing: an overview[J]. Plast Reconstr Surg, 2006, 117(7 Suppl): S1e-S-32e-S. DOI: 10.1097/01.prs.0000222562.60260.f9.
    [7] 魏在荣, 张演基, 王达利. 缺氧与炎症在创面愈合中扮演的角色[J]. 中华烧伤与创面修复杂志, 2024, 40(6): 507-513. DOI: 10.3760/cma.j.cn501225-20240111-00014.
    [8] Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10(9): 200223. DOI: 10.1098/rsob.200223.
    [9] Xiang JY, Kang L, Li ZM, et al. Biological scaffold as potential platforms for stem cells: current development and applications in wound healing[J]. World J Stem Cells, 2024, 16(4): 334-352. DOI: 10.4252/wjsc.v16.i4.334.
    [10] Huang SP, Wu MS, Shun CT, et al. Cyclooxygenase-2 increases hypoxia-inducible factor-1 and vascular endothelial growth factor to promote angiogenesis in gastric carcinoma [J]. J Biomed Sci, 2005, 12(1): 229-241. DOI: 10.1007/s11373-004-8177-5.
    [11] Talbott HE, Mascharak S, Griffin M, et al. Wound healing, fibroblast heterogeneity, and fibrosis[J]. Cell Stem Cell, 2022, 29(8): 1161-1180. DOI: 10.1016/j.stem.2022.07.006.
    [12] 姜玉峰. 中国体表慢性难愈合创面流行病学研究[D]. 北京: 解放军军医进修学院, 2011.
    [13] 黄跃生. 调控生物电场与氧微环境促进创面再生修复[J]. 中华烧伤杂志, 2021, 37(1): 5-8. DOI: 10.3760/cma.j.cn501120-20201123-00492.
    [14] Tan F, Wang Y, Zhang S, et al. Plasma dermatology: skin therapy using cold atmospheric plasma[J]. Front Oncol, 2022, 12: 918484. DOI: 10.3389/fonc.2022.918484.
    [15] Zhang H, Zhang C, Han Q. Mechanisms of bacterial inhibition and tolerance around cold atmospheric plasma[J]. Appl Microbiol Biotechnol, 2023, 107(17): 5301-5316. DOI: 10.1007/s00253-023-12618-w.
    [16] Kim KC, Piao MJ, Madduma Hewage SR, et al. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress[J]. Int J Mol Med, 2016, 37(1): 29-38. DOI: 10.3892/ijmm.2015.2405.
    [17] Wende K, Straßenburg S, Haertel B, et al. Atmospheric pressure plasma jet treatment evokes transient oxidative stress in HaCaT keratinocytes and influences cell physiology[J]. Cell Biol Int, 2014, 38(4): 412-425. DOI: 10.1002/cbin.10200.
    [18] Li Y, Nie L, Jin S, et al. The effect of plasma on bacteria and normal cells in infected wound[J]. Oxid Med Cell Longev, 2022, 2022: 1838202. DOI: 10.1155/2022/1838202.
    [19] Hotta E, Hara H, Kamiya T, et al. Non-thermal atmospheric pressure plasma-induced IL-8 expression is regulated via intracellular K+ loss and subsequent ERK activation in human keratinocyte HaCaT cells[J]. Arch Biochem Biophys, 2018, 644: 64-71. DOI: 10.1016/j.abb.2018.03.005.
    [20] Jung JM, Yoon HK, Jung CJ, et al. Cold plasma treatment promotes full-thickness healing of skin wounds in murine models[J]. Int J Low Extrem Wounds, 2023, 22(1): 77-84. DOI: 10.1177/15347346211002144.
    [21] Brun P, Pathak S, Castagliuolo I, et al. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells[J]. PLoS One, 2014, 9(8): e104397. DOI: 10.1371/journal.pone.0104397.
    [22] Kalghatgi S, Friedman G, Fridman A, et al. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release[J]. Ann Biomed Eng, 2010, 38(3): 748-757. DOI: 10.1007/s10439-009-9868-x.
    [23] Ma L, Chen Y, Gong Q, et al. Cold atmospheric plasma alleviates radiation-induced skin injury by suppressing inflammation and promoting repair[J]. Free Radic Biol Med, 2023, 204: 184-194. DOI: 10.1016/j.freeradbiomed.2023.05.002.
    [24] Kupke LS, Arndt S, Lenzer S, et al. Cold atmospheric plasma promotes the immunoreactivity of granulocytes in vitro[J]. Biomolecules, 2021, 11(6): 902. DOI: 10.3390/biom11060902.
    [25] Blaise O, Duchesne C, Capuzzo E, et al. Infected wound repair correlates with collagen I induction and NOX2 activation by cold atmospheric plasma[J]. NPJ Regen Med, 2024, 9(1): 28. DOI: 10.1038/s41536-024-00372-0.
    [26] Okeke IN, de Kraker MEA, Van Boeckel TP, et al. The scope of the antimicrobial resistance challenge[J]. Lancet, 2024, 403(10442): 2426-2438. DOI: 10.1016/S0140-6736(24)00876-6.
    [27] Bagheri M, von Kohout M, Zoric A, et al. Can cold atmospheric plasma be used for infection control in burns? A preclinical evaluation[J]. Biomedicines, 2023, 11(5): 1239. DOI: 10.3390/biomedicines11051239.
    [28] Oliver MA, Hussein LK, Molina EA, et al. Cold atmospheric plasma is bactericidal to wound-relevant pathogens and is compatible with burn wound healing[J]. Burns, 2024, 50(5): 1192-1212. DOI: 10.1016/j.burns.2023.12.012.
    [29] Lunder M, Dahle S, Fink R. Cold atmospheric plasma for surface disinfection: a promising weapon against deleterious meticillin-resistant Staphylococcus aureus biofilms[J]. J Hosp Infect, 2024, 143: 64-75. DOI: 10.1016/j.jhin.2023.10.014.
    [30] Soler-Arango J, Figoli C, Muraca G, et al. The Pseudomonas aeruginosa biofilm matrix and cells are drastically impacted by gas discharge plasma treatment: a comprehensive model explaining plasma-mediated biofilm eradication[J]. PLoS One, 2019, 14(6): e0216817. DOI: 10.1371/journal.pone.0216817.
    [31] Maybin JA, Thompson TP, Flynn PB, et al. Cold atmospheric pressure plasma-antibiotic synergy in Pseudomonas aeruginosa biofilms is mediated via oxidative stress response[J]. Biofilm, 2023, 5: 100122. DOI: 10.1016/j.bioflm.2023.100122.
    [32] Smolková B, Uzhytchak M, Lynnyk A, et al. A critical review on selected external physical cues and modulation of cell behavior: magnetic nanoparticles, non-thermal plasma and lasers[J]. J Funct Biomater, 2018, 10(1): 2. DOI: 10.3390/jfb10010002.
    [33] Lunov O, Zablotskii V, Churpita O, et al. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma[J]. Biomaterials, 2016, 82: 71-83. DOI: 10.1016/j.biomaterials.2015.12.027.
    [34] Boekema B, Stoop M, Vlig M, et al. Antibacterial and safety tests of a flexible cold atmospheric plasma device for the stimulation of wound healing[J]. Appl Microbiol Biotechnol, 2021, 105(5): 2057-2070. DOI: 10.1007/s00253-021-11166-5.
    [35] van Welzen A, Hoch M, Wahl P, et al. The response and tolerability of a novel cold atmospheric plasma wound dressing for the healing of split skin graft donor sites: a controlled pilot study[J]. Skin Pharmacol Physiol, 2021, 34(6): 328-336. DOI: 10.1159/000517524.
    [36] Mirpour S, Fathollah S, Mansouri P, et al. Cold atmospheric plasma as an effective method to treat diabetic foot ulcers: a randomized clinical trial[J]. Sci Rep, 2020, 10(1): 10440. DOI: 10.1038/s41598-020-67232-x.
    [37] Stratmann B, Costea TC, Nolte C, et al. Effect of cold atmospheric plasma therapy vs standard therapy placebo on wound healing in patients with diabetic foot ulcers: a randomized clinical trial[J]. JAMA Netw Open, 2020, 3(7): e2010411. DOI: 10.1001/jamanetworkopen.2020.10411.
    [38] Samsavar S, Mahmoudi H, Shakouri R, et al. The evaluation of efficacy of atmospheric pressure plasma in diabetic ulcers healing: a randomized clinical trial[J]. Dermatol Ther, 2021, 34(6): e15169. DOI: 10.1111/dth.15169.
    [39] Brehmer F, Haenssle HA, Daeschlein G, et al. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm® VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622)[J]. J Eur Acad Dermatol Venereol, 2015, 29(1): 148-155. DOI: 10.1111/jdv.12490.
    [40] Hiller J, Stratmann B, Timm J, et al. Enhanced growth factor expression in chronic diabetic wounds treated by cold atmospheric plasma[J]. Diabet Med, 2022, 39(6): e14787. DOI: 10.1111/dme.14787.
    [41] Kim S, Kim CH. Applications of plasma-activated liquid in the medical field[J]. Biomedicines, 2021, 9(11): 1700. DOI: 10.3390/biomedicines9111700.
    [42] Yang L, Niyazi G, Qi Y, et al. Plasma-activated saline promotes antibiotic treatment of systemic methicillin-resistant Staphylococcus aureus infection[J]. Antibiotics (Basel), 2021, 10(8): 1018. DOI: 10.3390/antibiotics10081018.
    [43] Sedik AA, Salama M, Fathy K, et al. Cold plasma approach fortifies the topical application of thymoquinone intended for wound healing via up-regulating the levels of TGF-ß, VEGF, and α-SMA in rats[J]. Int Immunopharmacol, 2023, 122: 110634. DOI: 10.1016/j.intimp.2023.110634.
    [44] Olayiwola B, O'Neill F, Frewen C, et al. Cold plasma deposition of tobramycin as an approach to localized antibiotic delivery to combat biofilm formation[J]. Pathogens, 2024, 13(4): 326. DOI: 10.3390/pathogens13040326.
    [45] Gaur N, Patenall BL, Ghimire B, et al. Cold atmospheric plasma-activated composite hydrogel for an enhanced and on-demand delivery of antimicrobials[J]. ACS Appl Mater Interfaces, 2023, 15(16): 19989-19996. DOI: 10.1021/acsami.3c01208.
    [46] Gan L, Jiang J, Duan JW, et al. Cold atmospheric plasma applications in dermatology: a systematic review[J]. J Biophotonics, 2021, 14(3): e202000415. DOI: 10.1002/jbio.202000415.
    [47] Bernhardt T, Semmler ML, Schäfer M, et al. Plasma medicine: applications of cold atmospheric pressure plasma in dermatology[J]. Oxid Med Cell Longev, 2019, 2019: 3873928. DOI: 10.1155/2019/3873928.
    [48] Li M, Gao J, Wang L, et al. Basic research and clinical exploration of cold atmospheric plasma for skin wounds[J]. Bioeng Transl Med, 2023, 8(5): e10550. DOI: 10.1002/btm2.10550.
  • 加载中
计量
  • 文章访问数:  159
  • HTML全文浏览量:  42
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-17

目录

    /

    返回文章
    返回