留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

创面测量技术的现状与代表性设备及未来发展趋势

钟书颜 舒茂国 都慧聪

钟书颜, 舒茂国, 都慧聪. 创面测量技术的现状与代表性设备及未来发展趋势[J]. 中华烧伤与创面修复杂志, 2025, 41(10): 1004-1010. DOI: 10.3760/cma.j.cn501225-20241231-00516.
引用本文: 钟书颜, 舒茂国, 都慧聪. 创面测量技术的现状与代表性设备及未来发展趋势[J]. 中华烧伤与创面修复杂志, 2025, 41(10): 1004-1010. DOI: 10.3760/cma.j.cn501225-20241231-00516.
Zhong SY,Shu MG,Du HC.Current status, representative devices, and future development trends of wound measurement technologies[J].Chin J Burns Wounds,2025,41(10):1004-1010.DOI: 10.3760/cma.j.cn501225-20241231-00516.
Citation: Zhong SY,Shu MG,Du HC.Current status, representative devices, and future development trends of wound measurement technologies[J].Chin J Burns Wounds,2025,41(10):1004-1010.DOI: 10.3760/cma.j.cn501225-20241231-00516.

创面测量技术的现状与代表性设备及未来发展趋势

doi: 10.3760/cma.j.cn501225-20241231-00516
基金项目: 

陕西省重点研发计划社会发展领域一般项目 2020SF-155

详细信息
    通讯作者:

    都慧聪,Email:dhc0309@126.com

Current status, representative devices, and future development trends of wound measurement technologies

Funds: 

General Program of the Shaanxi Provincial Key Research and Development Plan in the Field of Social Development 2020SF-155

More Information
  • 摘要: 创面的测量在创面修复和慢性疾病管理中具有重要意义,其准确性直接影响个性化治疗方案的制订和创面愈合进程的评估。传统的一维测量法(如标尺法和探针法)虽然操作简单,但因精度和一致性不足而难以满足现代临床需求。近年来,二维图像法、三维成像法及相应的智能测量设备逐渐成为创面测量的主流,通过运用数字图像处理、三维建模和人工智能技术显著提高了测量精度,为复杂创面的评估提供了多维度数据支持。该文系统梳理了创面测量技术的发展现状、代表性设备及其临床应用,并探讨了未来结合人工智能、多模态数据融合和隐私保护的优化方向,以期为临床医师和研究人员提供实践指导和技术参考。

     

  • 参考文献(46)

    [1] VogelS, RichterJ, WacheS, et al. Evaluation of a clinical decision support system in the domain of chronic wound management[J]. Stud Health Technol Inform, 2021,281:535-539. DOI: 10.3233/SHTI210228.
    [2] KieserDC, HammondC. Leading wound care technology: the ARANZ medical silhouette[J]. Adv Skin Wound Care, 2011,24(2):68-70. DOI: 10.1097/01.ASW.0000394028.64777.f7.
    [3] DarwinES, JallerJA, HirtPA, et al. Comparison of 3-dimensional wound measurement with laser-assisted and hand measurements: a retrospective chart review[J]. Wound Manag Prev, 2019,65(1):36-41.
    [4] LiuH, SunW, CaiW, et al. Current status, challenges, and prospects of artificial intelligence applications in wound repair theranostics[J]. Theranostics, 2025, 15(5): 1662-1688. DOI: 10.7150/thno.105109.
    [5] LangemoDK, MellandH, HansonD, et al. Two-dimensional wound measurement: comparison of 4 techniques[J]. Adv Wound Care, 1998,11(7):337-343.
    [6] LangemoD, AndersonJ, HansonD, et al. Measuring wound length, width, and area: which technique?[J]. Adv Skin Wound Care, 2008,21(1):42-45; quiz 45-47. DOI: 10.1097/01.ASW.0000284967.69863.2f.
    [7] 马燕飞, 宁宁, 陈佳丽, 等. 临床伤口测量方法研究新进展[J]. 四川医学, 2022, 43(10):1033-1036. DOI: 10.16252/j.cnki.issn1004-0501-2022.10.015.
    [8] JørgensenLB, SørensenJA, JemecGB, et al. Methods to assess area and volume of wounds - a systematic review[J]. Int Wound J, 2016,13(4):540-553. DOI: 10.1111/iwj.12472.
    [9] KhooR, JansenS. The evolving field of wound measurement techniques: a literature review[J]. Wounds, 2016,28(6):175-181.
    [10] ChangAC, DearmanB, GreenwoodJE. A comparison of wound area measurement techniques: visitrak versus photography[J]. Eplasty, 2011,11:e18.
    [11] ShamloulN, GhiasMH, KhachemouneA. The utility of smartphone applications and technology in wound healing[J]. Int J Low Extrem Wounds, 2019,18(3):228-235. DOI: 10.1177/1534734619853916.
    [12] StocktonKA, McMillanCM, StoreyKJ, et al. 3D photography is as accurate as digital planimetry tracing in determining burn wound area[J]. Burns, 2015,41(1):80-84. DOI: 10.1016/j.burns.2014.04.022.
    [13] SpinczykD, WidełM. Surface area estimation for application of wound care[J]. Injury, 2017,48(3):653-658. DOI: 10.1016/j.injury.2017.01.027.
    [14] KuangB, PenaG, SzpakZ, et al. Assessment of a smartphone-based application for diabetic foot ulcer measurement[J]. Wound Repair Regen, 2021,29(3):460-465. DOI: 10.1111/wrr.12905.
    [15] Gee KeeEL, KimbleRM, StocktonKA. 3D photography is a reliable burn wound area assessment tool compared to digital planimetry in very young children[J]. Burns, 2015,41(6):1286-1290. DOI: 10.1016/j.burns.2015.01.020.
    [16] RogersLC, BevilacquaNJ, ArmstrongDG, et al. Digital planimetry results in more accurate wound measurements: a comparison to standard ruler measurements[J]. J Diabetes Sci Technol, 2010,4(4):799-802. DOI: 10.1177/193229681000400405.
    [17] ShahA, WollakC, ShahJB. Wound measurement techniques: comparing the use of ruler method, 2D imaging and 3D scanner[J]. J Am Coll Clin Wound Spec, 2013,5(3):52-57. DOI: 10.1016/j.jccw.2015.02.001.
    [18] BowlingFL, PatersonJ, NdipA. Applying 21st century imaging technology to wound healing: an Avant-Gardist approach[J]. J Diabetes Sci Technol, 2013,7(5):1190-1194. DOI: 10.1177/193229681300700536.
    [19] TreuilletS, AlbouyB, LucasY. Three-dimensional assessment of skin wounds using a standard digital camera[J]. IEEE Trans Med Imaging, 2009,28(5):752-762. DOI: 10.1109/TMI.2008.2012025.
    [20] PlassmannP, JonesTD. MAVIS: a non-invasive instrument to measure area and volume of wounds. Measurement of Area and Volume Instrument System[J]. Med Eng Phys, 1998,20(5):332-338. DOI: 10.1016/s1350-4533(98)00034-4.
    [21] KrouskopTA, BakerR, WilsonMS. A noncontact wound measurement system[J]. J Rehabil Res Dev, 2002,39(3):337-345.
    [22] FoltynskiP, CiechanowskaA, LadyzynskiP. Wound surface area measurement methods[J]. Biocybern Biomed Eng, 2021, 41(4):1454-1465. DOI: 10.1016/j.bbe.2021.04.011.
    [23] McCardleJ, SmithM, BrewinE, et al. Visitrak: wound measurement as an aid to making treatment decisions[J]. Diabet Foot J, 2005, 8(4):207.
    [24] FoltynskiP. Ways to increase precision and accuracy of wound area measurement using smart devices: advanced app Planimator[J]. PLoS One, 2018,13(3):e0192485. DOI: 10.1371/journal.pone.0192485.
    [25] FoltynskiP, LadyzynskiP. Digital planimetry with a new adaptive calibration procedure results in accurate and precise wound area measurement at curved surfaces[J]. J Diabetes Sci Technol, 2022,16(1):128-136. DOI: 10.1177/1932296820959346.
    [26] DerwinR, PattonD, StrappH, et al. Integrating point-of-care bacterial fluorescence imaging-guided care with continued wound measurement for enhanced wound area reduction monitoring[J]. Diagnostics (Basel), 2023, 14(1):2. DOI: 10.3390/diagnostics14010002.
    [27] RedmondS, LewisCJ, RoweS, et al. The use of MolecuLight™ for early detection of colonisation in dermal templates[J]. Burns, 2019,45(8):1940-1942. DOI: 10.1016/j.burns.2019.10.011.
    [28] LeL, BaerM, BriggsP, et al. Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial[J]. Adv Wound Care (New Rochelle), 2021,10(3):123-136. DOI: 10.1089/wound.2020.1272.
    [29] 曹子龙, 安恬, 王立芝, 等. eKare inSight 3D创面管理系统在创面评估中的应用[J].山东医药,2018,58(45):92-94. DOI: 10.3969/j.issn.1002-266X.2018.45.026.
    [30] BillsJD, BerrimanSJ, NobleDL, et al. Pilot study to evaluate a novel three-dimensional wound measurement device[J]. Int Wound J, 2016,13(6):1372-1377. DOI: 10.1111/iwj.12534.
    [31] How accurate and reliable is inSight?2021-04-072024-12-31https://ekareinchelp.zendesk.com/hc/en-us/articles/224912447-How-accurate-and-reliable-is-inSight

    How accurate and reliable is inSight? [EB/OL]. (2021-04-07)[2024-12-31]. https://ekareinchelp.zendesk.com/hc/en-us/articles/224912447-How-accurate-and-reliable-is-inSight.

    [32] AlonsoMC, MohammedHT, FraserRD, et al. Comparison of wound surface area measurements obtained using clinically validated artificial intelligence-based technology versus manual methods and the effect of measurement method on debridement code reimbursement cost[J]. Wounds, 2023,35(10):E330-E338.
    [33] WangSC, AndersonJAE, EvansR, et al. Point-of-care wound visioning technology: reproducibility and accuracy of a wound measurement app[J]. PLoS One, 2017,12(8):e0183139. DOI: 10.1371/journal.pone.0183139.
    [34] FoltynskiP, LadyzynskiP, CiechanowskaA, et al. Wound area measurement with digital planimetry: improved accuracy and precision with calibration based on 2 rulers[J]. PLoS One, 2015,10(8):e0134622. DOI: 10.1371/journal.pone.0134622.
    [35] FoltynskiP, LadyzynskiP, SabalinskaS, et al. Accuracy and precision of selected wound area measurement methods in diabetic foot ulceration[J]. Diabetes Technol Ther, 2013,15(8):712-721. DOI: 10.1089/dia.2013.0026.
    [36] FoltynskiP, LadyzynskiP, WojcickiJM. A new smartphone-based method for wound area measurement[J]. Artif Organs, 2014,38(4):346-352. DOI: 10.1111/aor.12169.
    [37] DunhamDTeeneLWound measurement software on a point-of-care, digital imaging device for verification of measurement accuracy2018-09-112024-12-31https://moleculight.com/posters/objective-wound-measurement-software-point-of-care-hand-held-fluorescence-imaging-device-verification-measurement-accuracy-repeatability/

    DunhamD, TeeneL. Wound measurement software on a point-of-care, digital imaging device for verification of measurement accuracy[EB/OL]. (2018-09-11) [2024-12-31]. https://moleculight.com/posters/objective-wound-measurement-software-point-of-care-hand-held-fluorescence-imaging-device-verification-measurement-accuracy-repeatability/.

    [38] 赵楠, 周秋红, 许景灿, 等. 糖尿病足溃疡物理维度测量工具和技术的范围综述[J].解放军护理杂志,2021,38(11):69-72. DOI: 10.3969/j.issn.1008-9993.2021.11.018.
    [39] QueenD. Artificial intelligence and machine learning in wound care-the wounded machine![J]. Int Wound J, 2019,16(2):311. DOI: 10.1111/iwj.13108.
    [40] JungK, CovingtonS, SenCK, et al. Rapid identification of slow healing wounds[J]. Wound Repair Regen, 2016,24(1):181-188. DOI: 10.1111/wrr.12384.
    [41] SarpS, KuzluM, ZhaoY, et al. Digital twin in healthcare: a study for chronic wound management[J]. IEEE J Biomed Health Inform, 2023,27(11):5634-5643. DOI: 10.1109/JBHI.2023.3299028.
    [42] AnisuzzamanDM, WangC, RostamiB, et al. Image-based artificial intelligence in wound assessment: a systematic review[J]. Adv Wound Care (New Rochelle), 2022,11(12):687-709. DOI: 10.1089/wound.2021.0091.
    [43] JoplingJK, PridgenBC, YeungS. Setting assessment standards for artificial intelligence computer vision wound annotations[J]. JAMA Netw Open, 2021,4(5):e217851. DOI: 10.1001/jamanetworkopen.2021.7851.
    [44] ShahnazA, QamarU, KhalidA. Using blockchain for electronic health records[J]. IEEE Access, 2019, 7:147782-147795. DOI: 10.1109/ACCESS.2019.2946373.
    [45] HowellRS, LiuHH, KhanAA, et al. Development of a method for clinical evaluation of artificial intelligence-based digital wound assessment tools[J]. JAMA Netw Open, 2021,4(5):e217234. DOI: 10.1001/jamanetworkopen.2021.7234.
    [46] 彭雨馨, 付光蕾. 人工智能在感染伤口管理中的应用进展[J].军事护理,2023,40(12):85-88. DOI: 10.3969/j.issn.2097-1826.2023.12.021.
  • Table  1.   不同创面测量技术的比较

    方法类别具体方法与技术测量精确度成本适用创面类型患者依从性
    一维测量法标尺法仅适用于规则创面高(操作简单,无接触或短时间接触)
    探针法中等存在深腔、窦道的创面低(探针接触可能引起不适感)
    二维图像法透明膜描边法中等较低(需使用透明塑料薄膜)规则或轻度不规则的浅表创面中等(透明贴膜需接触创面,可能引起不适感)
    数字图像测量法中等(依赖于图像处理精度)中等(需数字设备处理图像)规则或不规则的浅表创面高(非接触式,患者无不适感)
    三维成像法三维摄影技术较高中等(取决于拍摄设备)不规则创面、深度较浅的创面高(非接触式,患者无不适感)
    激光扫描技术高(需要购入专业设备)具有复杂表面或边缘模糊的创面高(非接触式,患者无不适感)
    结构光技术高(需要购入专业设备)具有复杂表面或小型创面高(非接触式,患者无不适感)
    下载: 导出CSV

    Table  2.   创面测量代表性设备的准确性与一致性比较

    代表性设备第1作者样本量测量模型测量误差(准确性)测量精度(一致性)
    VisitrakFoltynski[24]40打印在白纸上的创面图像相对误差中位数为7.69%相对差异的标准差为8.92%
    Foltynski[35]16根据糖尿病足创面裁剪的乙烯基薄膜相对误差均值为6.8%变异系数均值为6.3%
    Foltynski[36]87打印在白纸上的创面图像相对误差均值为6.3%变异系数均值为4.2%
    SilhouetteMobileFoltynski[24]40打印在白纸上的创面图像相对误差中位数为2.09%相对差异的标准差为5.83%
    Foltynski[35]16根据糖尿病足创面裁剪的乙烯基薄膜相对误差均值为2.3%变异系数均值为3.1%
    Foltynski[36]87打印在白纸上的创面图像相对误差均值为2.1%变异系数均值为1.0%
    Foltynski[25]40附着在圆柱体表面的打印的创面图像相对误差中位数为2.65%相对差异的标准差为6.45%
    MolecuLightDunham[37]17附着在不同形状的物体表面的打印的创面图像自动模式:相对误差均值为5.46%,手动模式:相对误差均值为5.28%自动模式:变异系数<4%,手动模式:变异系数<4%
    eKare inSight误差<5%(±1 mm)评估者间一致性:组内相关系数>0.99评估者内一致性:组内相关系数>0.99
    Swift WoundWang[33]15塑料创面模型相对误差均值为3.3%评估者内一致性:组内相关系数为0.99
    AreaMeFoltynski[24]40打印在白纸上的创面图像相对误差中位数为2.50%相对差异的标准差为3.54%
    Foltynski[36]87打印在白纸上的创面图像相对误差均值为3.4%变异系数均值为1.6%
    PlanimatorFoltynski[24]40打印在白纸上的创面图像相对误差中位数为0.32%相对差异的标准差为0.52%
    Foltynski[25]40附着在圆柱体表面的打印的创面图像无自适应校准:相对误差中位数为2.23%有自适应校准:相对误差中位数为0.60%无自适应校准:相对差异的标准差为2.51%有自适应校准:相对差异的标准差为0.87%
    注:eKare inSight设备的相关指标来自参考文献[31];“—”表示无此项
    下载: 导出CSV
  • 加载中
表(2)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  9
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-31
  • 网络出版日期:  2025-10-22

目录

    /

    返回文章
    返回