Current status, representative devices, and future development trends of wound measurement technologies
-
摘要: 创面的测量在创面修复和慢性疾病管理中具有重要意义,其准确性直接影响个性化治疗方案的制订和创面愈合进程的评估。传统的一维测量法(如标尺法和探针法)虽然操作简单,但因精度和一致性不足而难以满足现代临床需求。近年来,二维图像法、三维成像法及相应的智能测量设备逐渐成为创面测量的主流,通过运用数字图像处理、三维建模和人工智能技术显著提高了测量精度,为复杂创面的评估提供了多维度数据支持。该文系统梳理了创面测量技术的发展现状、代表性设备及其临床应用,并探讨了未来结合人工智能、多模态数据融合和隐私保护的优化方向,以期为临床医师和研究人员提供实践指导和技术参考。Abstract: Wound measurement plays a critical role in wound repair and chronic disease management, its accuracy directly influences the development of personalized treatment plans and the evaluation of wound healing progress. Although traditional one-dimensional measurement methods (such as the ruler method and the probe method) are simple to use, they are unable to meet modern clinical demands due to insufficient accuracy and consistency. In recent years, two-dimensional imaging methods, three-dimensional imaging methods, and the corresponding intelligent measurement devices have become mainstream of wound measurement. By employing digital image processing, three-dimensional modeling, and artificial intelligence technologies, the measurement accuracy has been significantly improved, providing multidimensional data support for the assessment of complex wounds. This article systematically reviews the current development status of wound measurement technologies, representative devices, and their clinical applications. It also explores future directions for optimization, including the integration of artificial intelligence, multi-modal data fusion, and privacy protection. The aim is to provide practical guidance and technical references for clinicians and researchers.
-
参考文献
(46) [1] VogelS, RichterJ, WacheS, et al. Evaluation of a clinical decision support system in the domain of chronic wound management[J]. Stud Health Technol Inform, 2021,281:535-539. DOI: 10.3233/SHTI210228. [2] KieserDC, HammondC. Leading wound care technology: the ARANZ medical silhouette[J]. Adv Skin Wound Care, 2011,24(2):68-70. DOI: 10.1097/01.ASW.0000394028.64777.f7. [3] DarwinES, JallerJA, HirtPA, et al. Comparison of 3-dimensional wound measurement with laser-assisted and hand measurements: a retrospective chart review[J]. Wound Manag Prev, 2019,65(1):36-41. [4] LiuH, SunW, CaiW, et al. Current status, challenges, and prospects of artificial intelligence applications in wound repair theranostics[J]. Theranostics, 2025, 15(5): 1662-1688. DOI: 10.7150/thno.105109. [5] LangemoDK, MellandH, HansonD, et al. Two-dimensional wound measurement: comparison of 4 techniques[J]. Adv Wound Care, 1998,11(7):337-343. [6] LangemoD, AndersonJ, HansonD, et al. Measuring wound length, width, and area: which technique?[J]. Adv Skin Wound Care, 2008,21(1):42-45; quiz 45-47. DOI: 10.1097/01.ASW.0000284967.69863.2f. [7] 马燕飞, 宁宁, 陈佳丽, 等. 临床伤口测量方法研究新进展[J]. 四川医学, 2022, 43(10):1033-1036. DOI: 10.16252/j.cnki.issn1004-0501-2022.10.015. [8] JørgensenLB, SørensenJA, JemecGB, et al. Methods to assess area and volume of wounds - a systematic review[J]. Int Wound J, 2016,13(4):540-553. DOI: 10.1111/iwj.12472. [9] KhooR, JansenS. The evolving field of wound measurement techniques: a literature review[J]. Wounds, 2016,28(6):175-181. [10] ChangAC, DearmanB, GreenwoodJE. A comparison of wound area measurement techniques: visitrak versus photography[J]. Eplasty, 2011,11:e18. [11] ShamloulN, GhiasMH, KhachemouneA. The utility of smartphone applications and technology in wound healing[J]. Int J Low Extrem Wounds, 2019,18(3):228-235. DOI: 10.1177/1534734619853916. [12] StocktonKA, McMillanCM, StoreyKJ, et al. 3D photography is as accurate as digital planimetry tracing in determining burn wound area[J]. Burns, 2015,41(1):80-84. DOI: 10.1016/j.burns.2014.04.022. [13] SpinczykD, WidełM. Surface area estimation for application of wound care[J]. Injury, 2017,48(3):653-658. DOI: 10.1016/j.injury.2017.01.027. [14] KuangB, PenaG, SzpakZ, et al. Assessment of a smartphone-based application for diabetic foot ulcer measurement[J]. Wound Repair Regen, 2021,29(3):460-465. DOI: 10.1111/wrr.12905. [15] Gee KeeEL, KimbleRM, StocktonKA. 3D photography is a reliable burn wound area assessment tool compared to digital planimetry in very young children[J]. Burns, 2015,41(6):1286-1290. DOI: 10.1016/j.burns.2015.01.020. [16] RogersLC, BevilacquaNJ, ArmstrongDG, et al. Digital planimetry results in more accurate wound measurements: a comparison to standard ruler measurements[J]. J Diabetes Sci Technol, 2010,4(4):799-802. DOI: 10.1177/193229681000400405. [17] ShahA, WollakC, ShahJB. Wound measurement techniques: comparing the use of ruler method, 2D imaging and 3D scanner[J]. J Am Coll Clin Wound Spec, 2013,5(3):52-57. DOI: 10.1016/j.jccw.2015.02.001. [18] BowlingFL, PatersonJ, NdipA. Applying 21st century imaging technology to wound healing: an Avant-Gardist approach[J]. J Diabetes Sci Technol, 2013,7(5):1190-1194. DOI: 10.1177/193229681300700536. [19] TreuilletS, AlbouyB, LucasY. Three-dimensional assessment of skin wounds using a standard digital camera[J]. IEEE Trans Med Imaging, 2009,28(5):752-762. DOI: 10.1109/TMI.2008.2012025. [20] PlassmannP, JonesTD. MAVIS: a non-invasive instrument to measure area and volume of wounds. Measurement of Area and Volume Instrument System[J]. Med Eng Phys, 1998,20(5):332-338. DOI: 10.1016/s1350-4533(98)00034-4. [21] KrouskopTA, BakerR, WilsonMS. A noncontact wound measurement system[J]. J Rehabil Res Dev, 2002,39(3):337-345. [22] FoltynskiP, CiechanowskaA, LadyzynskiP. Wound surface area measurement methods[J]. Biocybern Biomed Eng, 2021, 41(4):1454-1465. DOI: 10.1016/j.bbe.2021.04.011. [23] McCardleJ, SmithM, BrewinE, et al. Visitrak: wound measurement as an aid to making treatment decisions[J]. Diabet Foot J, 2005, 8(4):207. [24] FoltynskiP. Ways to increase precision and accuracy of wound area measurement using smart devices: advanced app Planimator[J]. PLoS One, 2018,13(3):e0192485. DOI: 10.1371/journal.pone.0192485. [25] FoltynskiP, LadyzynskiP. Digital planimetry with a new adaptive calibration procedure results in accurate and precise wound area measurement at curved surfaces[J]. J Diabetes Sci Technol, 2022,16(1):128-136. DOI: 10.1177/1932296820959346. [26] DerwinR, PattonD, StrappH, et al. Integrating point-of-care bacterial fluorescence imaging-guided care with continued wound measurement for enhanced wound area reduction monitoring[J]. Diagnostics (Basel), 2023, 14(1):2. DOI: 10.3390/diagnostics14010002. [27] RedmondS, LewisCJ, RoweS, et al. The use of MolecuLight™ for early detection of colonisation in dermal templates[J]. Burns, 2019,45(8):1940-1942. DOI: 10.1016/j.burns.2019.10.011. [28] LeL, BaerM, BriggsP, et al. Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial[J]. Adv Wound Care (New Rochelle), 2021,10(3):123-136. DOI: 10.1089/wound.2020.1272. [29] 曹子龙, 安恬, 王立芝, 等. eKare inSight 3D创面管理系统在创面评估中的应用[J].山东医药,2018,58(45):92-94. DOI: 10.3969/j.issn.1002-266X.2018.45.026. [30] BillsJD, BerrimanSJ, NobleDL, et al. Pilot study to evaluate a novel three-dimensional wound measurement device[J]. Int Wound J, 2016,13(6):1372-1377. DOI: 10.1111/iwj.12534. [31] How accurate and reliable is inSight? 2021-04-07 2024-12-31 https://ekareinchelp.zendesk.com/hc/en-us/articles/224912447-How-accurate-and-reliable-is-inSight How accurate and reliable is inSight? [EB/OL]. (2021-04-07)[2024-12-31]. https://ekareinchelp.zendesk.com/hc/en-us/articles/224912447-How-accurate-and-reliable-is-inSight.
[32] AlonsoMC, MohammedHT, FraserRD, et al. Comparison of wound surface area measurements obtained using clinically validated artificial intelligence-based technology versus manual methods and the effect of measurement method on debridement code reimbursement cost[J]. Wounds, 2023,35(10):E330-E338. [33] WangSC, AndersonJAE, EvansR, et al. Point-of-care wound visioning technology: reproducibility and accuracy of a wound measurement app[J]. PLoS One, 2017,12(8):e0183139. DOI: 10.1371/journal.pone.0183139. [34] FoltynskiP, LadyzynskiP, CiechanowskaA, et al. Wound area measurement with digital planimetry: improved accuracy and precision with calibration based on 2 rulers[J]. PLoS One, 2015,10(8):e0134622. DOI: 10.1371/journal.pone.0134622. [35] FoltynskiP, LadyzynskiP, SabalinskaS, et al. Accuracy and precision of selected wound area measurement methods in diabetic foot ulceration[J]. Diabetes Technol Ther, 2013,15(8):712-721. DOI: 10.1089/dia.2013.0026. [36] FoltynskiP, LadyzynskiP, WojcickiJM. A new smartphone-based method for wound area measurement[J]. Artif Organs, 2014,38(4):346-352. DOI: 10.1111/aor.12169. [37] Dunham D Teene L Wound measurement software on a point-of-care, digital imaging device for verification of measurement accuracy 2018-09-11 2024-12-31 https://moleculight.com/posters/objective-wound-measurement-software-point-of-care-hand-held-fluorescence-imaging-device-verification-measurement-accuracy-repeatability/ DunhamD, TeeneL. Wound measurement software on a point-of-care, digital imaging device for verification of measurement accuracy[EB/OL]. (2018-09-11) [2024-12-31]. https://moleculight.com/posters/objective-wound-measurement-software-point-of-care-hand-held-fluorescence-imaging-device-verification-measurement-accuracy-repeatability/.
[38] 赵楠, 周秋红, 许景灿, 等. 糖尿病足溃疡物理维度测量工具和技术的范围综述[J].解放军护理杂志,2021,38(11):69-72. DOI: 10.3969/j.issn.1008-9993.2021.11.018. [39] QueenD. Artificial intelligence and machine learning in wound care-the wounded machine![J]. Int Wound J, 2019,16(2):311. DOI: 10.1111/iwj.13108. [40] JungK, CovingtonS, SenCK, et al. Rapid identification of slow healing wounds[J]. Wound Repair Regen, 2016,24(1):181-188. DOI: 10.1111/wrr.12384. [41] SarpS, KuzluM, ZhaoY, et al. Digital twin in healthcare: a study for chronic wound management[J]. IEEE J Biomed Health Inform, 2023,27(11):5634-5643. DOI: 10.1109/JBHI.2023.3299028. [42] AnisuzzamanDM, WangC, RostamiB, et al. Image-based artificial intelligence in wound assessment: a systematic review[J]. Adv Wound Care (New Rochelle), 2022,11(12):687-709. DOI: 10.1089/wound.2021.0091. [43] JoplingJK, PridgenBC, YeungS. Setting assessment standards for artificial intelligence computer vision wound annotations[J]. JAMA Netw Open, 2021,4(5):e217851. DOI: 10.1001/jamanetworkopen.2021.7851. [44] ShahnazA, QamarU, KhalidA. Using blockchain for electronic health records[J]. IEEE Access, 2019, 7:147782-147795. DOI: 10.1109/ACCESS.2019.2946373. [45] HowellRS, LiuHH, KhanAA, et al. Development of a method for clinical evaluation of artificial intelligence-based digital wound assessment tools[J]. JAMA Netw Open, 2021,4(5):e217234. DOI: 10.1001/jamanetworkopen.2021.7234. [46] 彭雨馨, 付光蕾. 人工智能在感染伤口管理中的应用进展[J].军事护理,2023,40(12):85-88. DOI: 10.3969/j.issn.2097-1826.2023.12.021. -
Table 1. 不同创面测量技术的比较
方法类别 具体方法与技术 测量精确度 成本 适用创面类型 患者依从性 一维测量法 标尺法 低 低 仅适用于规则创面 高(操作简单,无接触或短时间接触) 探针法 中等 低 存在深腔、窦道的创面 低(探针接触可能引起不适感) 二维图像法 透明膜描边法 中等 较低(需使用透明塑料薄膜) 规则或轻度不规则的浅表创面 中等(透明贴膜需接触创面,可能引起不适感) 数字图像测量法 中等(依赖于图像处理精度) 中等(需数字设备处理图像) 规则或不规则的浅表创面 高(非接触式,患者无不适感) 三维成像法 三维摄影技术 较高 中等(取决于拍摄设备) 不规则创面、深度较浅的创面 高(非接触式,患者无不适感) 激光扫描技术 高 高(需要购入专业设备) 具有复杂表面或边缘模糊的创面 高(非接触式,患者无不适感) 结构光技术 高 高(需要购入专业设备) 具有复杂表面或小型创面 高(非接触式,患者无不适感) Table 2. 创面测量代表性设备的准确性与一致性比较
代表性设备 第1作者 样本量 测量模型 测量误差(准确性) 测量精度(一致性) Visitrak Foltynski[24] 40 打印在白纸上的创面图像 相对误差中位数为7.69% 相对差异的标准差为8.92% Foltynski[35] 16 根据糖尿病足创面裁剪的乙烯基薄膜 相对误差均值为6.8% 变异系数均值为6.3% Foltynski[36] 87 打印在白纸上的创面图像 相对误差均值为6.3% 变异系数均值为4.2% SilhouetteMobile Foltynski[24] 40 打印在白纸上的创面图像 相对误差中位数为2.09% 相对差异的标准差为5.83% Foltynski[35] 16 根据糖尿病足创面裁剪的乙烯基薄膜 相对误差均值为2.3% 变异系数均值为3.1% Foltynski[36] 87 打印在白纸上的创面图像 相对误差均值为2.1% 变异系数均值为1.0% Foltynski[25] 40 附着在圆柱体表面的打印的创面图像 相对误差中位数为2.65% 相对差异的标准差为6.45% MolecuLight Dunham[37] 17 附着在不同形状的物体表面的打印的创面图像 自动模式:相对误差均值为5.46%,手动模式:相对误差均值为5.28% 自动模式:变异系数<4%,手动模式:变异系数<4% eKare inSight — — — 误差<5%(±1 mm) 评估者间一致性:组内相关系数>0.99评估者内一致性:组内相关系数>0.99 Swift Wound Wang[33] 15 塑料创面模型 相对误差均值为3.3% 评估者内一致性:组内相关系数为0.99 AreaMe Foltynski[24] 40 打印在白纸上的创面图像 相对误差中位数为2.50% 相对差异的标准差为3.54% Foltynski[36] 87 打印在白纸上的创面图像 相对误差均值为3.4% 变异系数均值为1.6% Planimator Foltynski[24] 40 打印在白纸上的创面图像 相对误差中位数为0.32% 相对差异的标准差为0.52% Foltynski[25] 40 附着在圆柱体表面的打印的创面图像 无自适应校准:相对误差中位数为2.23%有自适应校准:相对误差中位数为0.60% 无自适应校准:相对差异的标准差为2.51%有自适应校准:相对差异的标准差为0.87% 注:eKare inSight设备的相关指标来自参考文献[31];“—”表示无此项 -
计量
- 文章访问数: 79
- HTML全文浏览量: 9
- PDF下载量: 16
- 被引次数: 0



下载: