-
摘要: 历经数千年的发展,压力治疗已成为增生性瘢痕和瘢痕疙瘩的重要治疗手段。该文回顾瘢痕压力治疗的历史演变,分析其生物机制及临床应用现状,并探讨压力治疗方法的分类及相关原则。研究表明,压力治疗能够有效改善瘢痕的外观与功能,其机制涉及对瘢痕组织形态、细胞功能、免疫反应及细胞外基质重塑的调节。尽管目前该治疗方法形式多样且应用广泛,但仍面临压力施加不均、患者依从性差及压力监测不准确等挑战。未来研究应深入探讨压力治疗的多维影响因素,以探寻更加个性化与科学的瘢痕治疗方案。Abstract: Through thousands of years of development, pressure therapy has become an important treatment method for hypertrophic scars and keloids. This article reviews the historical evolution of scar pressure therapy, analyzes its biological mechanisms and current clinical applications, and discusses the classification of pressure therapy methods and related principles. It has been demonstrated that pressure therapy can effectively improve the appearance and function of scars, with mechanisms involving the regulation of scar tissue morphology, cellular functions, immune responses, and extracellular matrix remodeling. Although the current therapy is diverse in approaches and is widely used, it still faces challenges including uneven pressure application, poor patient compliance, and inaccurate pressure monitoring. Future research should explore the multidimensional influencing factors of pressure therapy to explore more personalized and scientific scar treatment strategies.
-
Key words:
- Cicatrix /
- Keloid /
- Clinical study /
- Physical therapy modalities /
- Biological mechanisms /
- Treatment principles
-
参考文献
(71) [1] FinnertyCC, JeschkeMG, BranskiLK, et al. Hypertrophic scarring: the greatest unmet challenge after burn injury[J]. Lancet, 2016,388(10052):1427-1436. DOI: 10.1016/S0140-6736(16)31406-4. [2] MoiemenN, MathersJ, JonesL, et al. Pressure garment to prevent abnormal scarring after burn injury in adults and children: the PEGASUS feasibility RCT and mixed-methods study[J]. Health Technol Assess, 2018,22(36):1-162. DOI: 10.3310/hta22360. [3] De DeckerI, BeeckmanA, HoeksemaH, et al. Pressure therapy for scars: myth or reality? A systematic review[J]. Burns, 2023,49(4):741-756. DOI: 10.1016/j.burns.2023.03.007. [4] LinaresHA, LarsonDL, Willis-GalstaunBA. Historical notes on the use of pressure in the treatment of hypertrophic scars or keloids[J]. Burns,1993, 19(1):17-21. DOI: 10.1016/0305-4179(93)90095-p. [5] MustoeTA, CooterRD, GoldMH, et al. International clinical recommendations on scar management[J]. Plast Reconstr Surg, 2002,110(2):560-571. DOI: 10.1097/00006534-200208000-00031. [6] Li-TsangCW, FengB, HuangL, et al. A histological study on the effect of pressure therapy on the activities of myofibroblasts and keratinocytes in hypertrophic scar tissues after burn[J]. Burns, 2015,41(5):1008-1016. DOI: 10.1016/j.burns.2014.11.017. [7] SuoH, YangZR, DuK, et al. Pathological-microenvironment responsive injectable GelMA hydrogel with visualized biodegradation for pressure-assisted treatment of hypertrophic scars[J]. Int J Biol Macromol, 2025,292:139175. DOI: 10.1016/j.ijbiomac.2024.139175. [8] 刘宁, 王鹏, 蔡瑞昭, 等. 体外构建3D细胞压力培养模型研究压力对增生性瘢痕成纤维细胞的作用[J/CD].中华损伤与修复杂志(电子版),2021,16(2):132-139. DOI: 10.3877/cma.j.issn.1673-9450.2021.02.008. [9] WangZ, ZhaoF, XuC, et al. Metabolic reprogramming in skin wound healing[J/OL]. Burns Trauma, 2024,12:tkad047[2025-02-15]. https://pubmed.ncbi.nlm.nih.gov/38179472/. DOI: 10.1093/burnst/tkad047. [10] QiuX, LuoH, HuangG. Roles of negative pressure wound therapy for scar revision[J]. Front Physiol, 2023,14:1194051. DOI: 10.3389/fphys.2023.1194051. [11] LiuB, LiuY, WangL, et al. RNA-seq-based analysis of the hypertrophic scarring with and without pressure therapy in a Bama minipig model[J]. Sci Rep, 2018, 8(1):11831. DOI: 10.1038/s41598-018-29840-6. [12] GirnitaL, WorrallC, TakahashiS, et al. Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation[J]. Cell Mol Life Sci, 2014,71(13):2403-2427. DOI: 10.1007/s00018-013-1514-y. [13] YangY, WangD, ZhangC, et al. Piezo1 mediates endothelial atherogenic inflammatory responses via regulation of YAP/TAZ activation[J]. Hum Cell, 2022,35(1):51-62. DOI: 10.1007/s13577-021-00600-5. [14] LeeHJ, JangYJ. Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids[J]. Int J Mol Sci, 2018,19(3):711.DOI: 10.3390/ijms19030711. [15] HosseiniM, BrownJ, KhosrotehraniK, et al. Skin biomechanics: a potential therapeutic intervention target to reduce scarring[J/OL]. Burns Trauma, 2022,10:tkac036[2025-02-15]. https://pubmed.ncbi.nlm.nih.gov/36017082/. DOI: 10.1093/burnst/tkac036. [16] KimJY, WillardJJ, SuppDM, et al. Burn scar biomechanics after pressure garment therapy[J]. Plast Reconstr Surg, 2015,136(3):572-581. DOI: 10.1097/PRS.0000000000001507. [17] DeBrulerDM, BaumannME, BlackstoneBN, et al. Role of early application of pressure garments following burn injury and autografting[J]. Plast Reconstr Surg, 2019,143(2):310e-321e. DOI: 10.1097/PRS.0000000000005270. [18] RenòF, GrazianettiP, CannasM. Effects of mechanical compression on hypertrophic scars: prostaglandin E2 release[J]. Burns, 2001,27(3):215-218. DOI: 10.1016/s0305-4179(00)00101-7. [19] LuanX, ChenP, LiY, et al. TNF-α/IL-1β-licensed hADSCs alleviate cholestatic liver injury and fibrosis in mice via COX-2/PGE2 pathway[J]. Stem Cell Res Ther, 2023,14(1):100. DOI: 10.1186/s13287-023-03342-3. [20] 庄嘉宝, 胥春. 机械力刺激诱导机体组织炎症反应机制研究进展[J].医用生物力学,2017,32(5):476-480. DOI: 10.16156/j.1004-7220.2017.05.015. [21] 单圣周 机械力调控巨噬细胞极化影响创面修复的研究 上海 上海交通大学 2017 单圣周. 机械力调控巨噬细胞极化影响创面修复的研究[D].上海:上海交通大学, 2017.
[22] SinghAK, ZajdelJ, MirrasekhianE, et al. Prostaglandin-mediated inhibition of serotonin signaling controls the affective component of inflammatory pain[J]. J Clin Invest, 2017,127(4):1370-1374. DOI: 10.1172/JCI90678. [23] EishiK, BaeSJ, OgawaF, et al. Silicone gel sheets relieve pain and pruritus with clinical improvement of keloid: possible target of mast cells[J]. J Dermatolog Treat, 2003,14(4):248-252. DOI: 10.1080/09546630310016808. [24] CarneyBC, LiuZ, AlkhalilA, et al. Elastin is differentially regulated by pressure therapy in a porcine model of hypertrophic scar[J]. J Burn Care Res, 2017, 38(1):28-35. DOI: 10.1097/BCR.0000000000000413. [25] TravisTE, GhassemiP, PrindezeNJ, et al. Matrix metalloproteinases are differentially regulated and responsive to compression therapy in a red Duroc model of hypertrophic scar[J]. Eplasty, 2018,18:e1. [26] ZhangT, WangXF, WangZC, et al. Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation[J]. Biomed Pharmacother, 2020,129:110287. DOI: 10.1016/j.biopha.2020.110287. [27] HuangD, LiuY, HuangY, et al. Mechanical compression upregulates MMP9 through SMAD3 but not SMAD2 modulation in hypertrophic scar fibroblasts[J]. Connect Tissue Res, 2014,55(5/6):391-396. DOI: 10.3109/03008207.2014.959118. [28] PowellHM, NedelecB. Mechanomodulation of burn scarring via pressure therapy[J]. Adv Wound Care (New Rochelle), 2022,11(4):179-191. DOI: 10.1089/wound.2021.0061. [29] MacintyreL. New calibration method for I-scan sensors to enable the precise measurement of pressures delivered by 'pressure garments'[J]. Burns, 2011,37(7):1174-1181. DOI: 10.1016/j.burns.2011.06.008. [30] HarrisIM, LeeKC, DeeksJJ, et al. Pressure-garment therapy for preventing hypertrophic scarring after burn injury[J]. Cochrane Database Syst Rev, 2024,1(1):CD013530. DOI: 10.1002/14651858.CD013530.pub2. [31] AiJW, LiuJT, PeiSD, et al. The effectiveness of pressure therapy (15-25 mmHg) for hypertrophic burn scars: a systematic review and meta-analysis[J]. Sci Rep, 2017,7:40185. DOI: 10.1038/srep40185. [32] MalaraMM, KimJY, ClarkJA, et al. Structural, chemical, and mechanical properties of pressure garments as a function of simulated use and repeated laundering[J]. J Burn Care Res, 2018,39(4):562-571. DOI: 10.1093/jbcr/irx018. [33] MacintyreL, DahaleM, RaeM. Impact of moisture on the pressure delivering potential of pressure garments[J]. J Burn Care Res, 2016,37(4):e365-373. DOI: 10.1097/BCR.0000000000000272. [34] KoudougouC, HuonJF, PraudM, et al. Conception and use of a custom-made facial mask for pressure therapy in complex facial wounds[J]. J Stomatol Oral Maxillofac Surg, 2020,121(3):278-281. DOI: 10.1016/j.jormas.2019.10.012. [35] EdwickDO, HinceDA, RawlinsJM, et al. Randomized controlled trial of compression interventions for managing hand burn edema, as measured by bioimpedance spectroscopy[J]. J Burn Care Res, 2020,41(5):992-999. DOI: 10.1093/jbcr/iraa104. [36] ParryI, HanleyC, NiszczakJ, et al. Harnessing the Transparent Face Orthosis for facial scar management: a comparison of methods[J]. Burns, 2013,39(5):950-956. DOI: 10.1016/j.burns.2012.11.009. [37] WeiY, Li-TsangC, WuJ, et al. A finite element model of the 3D-printed transparent facemask for applying pressure therapy[J]. Clin Biomech (Bristol), 2021,87:105414. DOI: 10.1016/j.clinbiomech.2021.105414. [38] HwangSJ, SeoJ, ChaJY, et al. Utility of customized 3D compression mask with pressure sensors on facial burn scars: a single-blinded, randomized controlled trial[J]. Burns, 2024,50(7):1885-1897. DOI: 10.1016/j.burns.2024.05.021. [39] KantSB, CollaC, Van den KerckhoveE, et al. Satisfaction with facial appearance and quality of life after treatment of face scars with a transparent facial pressure mask[J]. Facial Plast Surg, 2018,34(4):394-399. DOI: 10.1055/s-0038-1648249. [40] De HenauM, van KuijkS, CollaC, et al. Pressure masks for facial scar treatment after oncological reconstruction: long-term patient satisfaction and quality of life[J]. Facial Plast Surg, 2024,40(1):36-45. DOI: 10.1055/a-2035-4468. [41] NagataT, MiuraK, HommaY, et al. Comparison between negative-pressure fixation and film dressing in wound management after tissue expansion: a randomized controlled trial[J]. Plast Reconstr Surg, 2018,142(1):37-41. DOI: 10.1097/PRS.0000000000004470. [42] PruksapongC, BurusapatC, HongkarnjanakulN. Efficacy of silicone gel versus silicone gel sheet in hypertrophic scar prevention of deep hand burn patients with skin graft: a prospective randomized controlled trial and systematic review[J]. Plast Reconstr Surg Glob Open, 2020,8(10):e3190. DOI: 10.1097/GOX.0000000000003190. [43] WangJ, WuJ, XuM, et al. A comprehensive reconstruction strategy for moderate to severe faciocervical scar contractures[J]. Lasers Med Sci, 2021,36(6):1275-1282. DOI: 10.1007/s10103-020-03178-w. [44] ZhangP, WuQ, DingH, et al. Efficacy and safety of pressure therapy alone and in combination with silicone in prevention of hypertrophic scars: a systematic review with meta-analysis of randomized controlled trials[J]. Aesthetic Plast Surg, 2023,47(5):2159-2174. DOI: 10.1007/s00266-023-03591-w. [45] WisemanJ, SimonsM, KimbleR, et al. Effectiveness of topical silicone gel and pressure garment therapy for burn scar prevention and management in children 12-months postburn: a parallel group randomised controlled trial[J]. Clin Rehabil, 2021,35(8):1126-1141. DOI: 10.1177/02692155211020351. [46] 李娟, 白永强, 吕桂玲, 等. 不同压力弹力绷带对抑制瘢痕增生的影响[J].中国组织工程研究与临床康复,2009,13(38):7583-7586. DOI: 10.3969/j.issn.1673-8225.2009.38.041. [47] KantakNA, MistryR, HalvorsonEG. A review of negative-pressure wound therapy in the management of burn wounds[J]. Burns, 2016,42(8):1623-1633. DOI: 10.1016/j.burns.2016.06.011. [48] TimmermansFW, MokkenSE, SmitJM, et al. The impact of incisional negative pressure wound therapy on scar quality and patient-reported outcomes: a within-patient-controlled, randomised trial[J]. Wound Repair Regen, 2022,30(2):210-221. DOI: 10.1111/wrr.13001. [49] LiuY, XuM, WangZ, et al. The effect of incisional negative pressure wound therapy on the improvement of postoperative cosmetic suture wounds and scar hyperplasia[J]. Int Wound J, 2023,20(8):3081-3087. DOI: 10.1111/iwj.14183. [50] MonstreyS, MiddelkoopE, VranckxJJ, et al. Updated scar management practical guidelines: non-invasive and invasive measures[J]. J Plast Reconstr Aesthet Surg, 2014,67(8):1017-1025. DOI: 10.1016/j.bjps.2014.04.011. [51] LiP, Li-TsangCWP, DengX, et al. The recovery of post-burn hypertrophic scar in a monitored pressure therapy intervention programme and the timing of intervention[J]. Burns, 2018,44(6):1451-1467. DOI: 10.1016/j.burns.2018.01.008. [52] Van den KerckhoveE, StappaertsK, FieuwsS, et al. The assessment of erythema and thickness on burn related scars during pressure garment therapy as a preventive measure for hypertrophic scarring[J]. Burns, 2005,31(6):696-702. DOI: 10.1016/j.burns.2005.04.014. [53] RockwellWB, CohenIK, EhrlichHP. Keloids and hypertrophic scars: a comprehensive review[J]. Plast Reconstr Surg,1989,84(5):827-837. DOI: 10.1097/00006534-198911000-00021. [54] BaurPS, LarsonDL, StaceyTR, et al. Ultrastructural analysis of pressure-treated human hypertrophic scars[J]. J Trauma, 1976,16(12):958-967. DOI: 10.1097/00005373-197612000-00004. [55] LeeSY, ChoYS, JooSY, et al. Comparison between the portable pressure measuring device and PicoPress® for garment pressure measurement on hypertrophic burn scar during compression therapy[J]. Burns, 2021, 47(7):1621-1626. DOI: 10.1016/j.burns.2021.01.018. [56] GieleH, LiddiardK, BoothK, et al. Anatomical variations in pressures generated by pressure garments[J]. Plast Reconstr Surg, 1998,101(2):399-406; discussion 407. DOI: 10.1097/00006534-199802000-00021. [57] CandyLH, CeciliaLT, PingZY. Effect of different pressure magnitudes on hypertrophic scar in a Chinese population[J]. Burns, 2010,36(8):1234-1241. DOI: 10.1016/j.burns.2010.05.008. [58] KetchumLD, CohenIK, MastersFW. Hypertrophic scars and keloids. A collective review[J]. Plast Reconstr Surg, 1974,53(2):140-154. DOI: 10.1097/00006534-197402000-00004. [59] BloemenMC, van der VeerWM, UlrichMM, et al. Prevention and curative management of hypertrophic scar formation[J]. Burns, 2009,35(4):463-475. DOI: 10.1016/j.burns.2008.07.016. [60] AtiyehBS. Nonsurgical management of hypertrophic scars: evidence-based therapies, standard practices, and emerging methods:an update[J]. Aesth Plast Surg, 2020,44(4):1345-1347. DOI: 10.1007/s00266-020-01766-3. [61] KantS, van den KerckhoveE, CollaC, et al. Duration of scar maturation: retrospective analyses of 361 hypertrophic scars over 5 years[J]. Adv Skin Wound Care, 2019,32(1):26-34. DOI: 10.1097/01.ASW.0000547415.38888.c4. [62] AnzarutA, OlsonJ, SinghP, et al. The effectiveness of pressure garment therapy for the prevention of abnormal scarring after burn injury: a meta-analysis[J]. J Plast Reconstr Aesthet Surg, 2009,62(1):77-84. DOI: 10.1016/j.bjps.2007.10.052. [63] AtiyehBS. Nonsurgical management of hypertrophic scars: evidence-based therapies, standard practices, and emerging methods[J].Aesth Plast Surg, 2007, 31(5):468-492;discussion 493-494.DOI: 10.1007/s00266-006-0253-y. [64] ArnoAI, GauglitzGG, BarretJP, et al. Up-to-date approach to manage keloids and hypertrophic scars: a useful guide[J]. Burns, 2014,40(7):1255-1266. DOI: 10.1016/j.burns.2014.02.011. [65] CoghlanN, CopleyJ, AplinT, et al. Patient experience of wearing compression garments post burn injury: a review of the literature[J]. J Burn Care Res, 2017,38(4):260-269. DOI: 10.1097/BCR.0000000000000506. [66] UsluA, SürücüA, KorkmazMA, et al. Acquired localized hypertrichosis following pressure garment and/or silicone therapy in burn patients[J]. Ann Plast Surg, 2019,82(2):158-161. DOI: 10.1097/SAP.0000000000001686. [67] RappoportK, MüllerR, Flores-MirC. Dental and skeletal changes during pressure garment use in facial burns: a systematic review[J]. Burns, 2008, 34(1):18-23. DOI: 10.1016/j.burns.2007.07.003. [68] FrickeNB, OmnellML, DutcherKA, et al. Skeletal and dental disturbances in children after facial burns and pressure garment use: a 4-year follow-up[J]. J Burn Care Rehabil, 1999,20(3):239-249. DOI: 10.1097/00004630-199905000-00016. [69] HubbardM, MastersIB, WilliamsGR, et al. Severe obstructive sleep apnoea secondary to pressure garments used in the treatment of hypertrophic burn scars[J]. Eur Respir J, 2000,16(6):1205-1207. DOI: 10.1034/j.1399-3003.2000.16f29.x. [70] GuptaS, SharmaVK. Standard guidelines of care: keloids and hypertrophic scars[J]. Indian J Dermatol Venereol Leprol, 2011,77(1):94-100. DOI: 10.4103/0378-6323.74968. [71] 中国整形美容协会瘢痕医学分会. 瘢痕早期治疗全国专家共识(2020版)[J].中华烧伤杂志, 2021, 37(2):113-125. DOI: 10.3760/cma.j.cn501120-20200609-00300. -



下载: