留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

瘢痕压力治疗的机制与临床应用

章一新 柴筠

胡雅楠, 谢婷珺, 刘元波, 等. 吲哚菁绿血管造影辅助下设计切取扩张皮瓣修复瘢痕切除创面的临床效果[J]. 中华烧伤与创面修复杂志, 2025, 41(4): 1-7. DOI: 10.3760/cma.j.cn501225-20250108-00013.
引用本文: 章一新, 柴筠. 瘢痕压力治疗的机制与临床应用[J]. 中华烧伤与创面修复杂志, 2025, 41(4): 1-9. DOI: 10.3760/cma.j.cn 501225-20250215-00064.
Hu Yanan,Xie Tingjun,Liu Yuanbo,et al.Clinical effect of indocyanine green angiography in designing and harvesting expanded flaps for scar excision wound repair[J].Chin J Burns Wounds,2025,41(4):1-7.DOI: 10.3760/cma.j.cn501225-20250108-00013.
Citation: Zhang Yixin,Chai Jun.Mechanism and clinical application of scar pressure therapy[J].Chin J Burns Wounds,2025,41(4):1-9.DOI: 10.3760/cma.j.cn 501225-20250215-00064.

瘢痕压力治疗的机制与临床应用

doi: 10.3760/cma.j.cn501225-20250215-00064
基金项目: 

国家自然科学基金面上项目 82172222

详细信息
    通讯作者:

    章一新,Email:zhangyixin6688@163.com

Mechanism and clinical application of scar pressure therapy

Funds: 

General Program of the National Natural Science Foundation of China 82172222

More Information
  • 摘要: 经历数千年的发展,瘢痕压力治疗已成为增生性瘢痕和瘢痕疙瘩的重要治疗手段。该文回顾瘢痕压力治疗的历史演变,分析其生物机制及临床应用现状,并探讨压力治疗方法的分类及相关原则。研究表明,压力治疗能够有效改善瘢痕的外观与功能,其机制涉及对瘢痕组织形态、细胞功能、免疫反应及ECM重塑的调节。尽管目前该治疗方法多样且应用广泛,但仍面临压力施加不均、患者依从性差及压力监测不准确等挑战。未来研究应深入探讨压力治疗的多维影响因素,以实现更加个性化与科学的瘢痕治疗方案。

     

  • (1)证实吲哚菁绿血管造影作为一种浅表血流可视化工具,能够清晰呈现扩张皮瓣的动静脉分布特征及血流灌注情况。

    (2)该技术不仅可辅助术前的皮瓣设计与血流评估,还可为扩张皮瓣的整个设计过程提供精准导航,从而提高该皮瓣设计的精确性和转移手术的安全性。

    Highlights:

    (1)It was confirmed that indocyanine green angiography, as a superficial blood flow visualization tool, could clearly delineate the characteristics of arteriovenous distribution and blood perfusion in expanded flaps.

    (2)This technology not only assisted in preoperative flap design and blood flow assessment but also provided precise navigation throughout the entire design process of expanded flaps, thereby enhancing the accuracy of flap design and the safety of transfer surgery.

    皮肤软组织扩张术是一种将皮肤软组织扩张器置入正常皮肤下,通过逐渐增加皮肤软组织扩张器体积来施加压力,从而刺激皮肤生成额外的软组织,并利用这些新生成的皮肤软组织进行创面修复的技术[1, 2, 3],是修复包括瘢痕切除后创面在内的大面积软组织缺损的常用方法[4]。常用的扩张皮瓣切取方法包括推进、单侧回切和双侧回切法,其中单侧回切法可以结合推进或转位方式转移扩张皮肤,从而最大化利用扩张组织[5],是最为常见的皮瓣设计方式。尽管皮肤软组织扩张术具有延迟皮瓣效应,且扩张皮瓣的血运通常优于非扩张皮瓣[6, 7],但单侧回切过深仍可能导致皮瓣坏死[8]。目前,回切皮瓣的设计依旧遵循传统的任意型皮瓣设计原则,且受到长宽比的严格限制,这在一定程度上限制了扩张皮瓣设计的灵活性和转移效率。

    有研究者曾提出,身体某些血管体区之间存在着真性血管吻合,沿着“穿支-真性血管吻合-穿支”的方向设计皮瓣,可以切取更长的皮瓣,且血运更加可靠[9, 10, 11]。如果在扩张皮瓣上定位到类似的血运“高速通道”,或许可以突破扩张皮瓣设计中严格的长宽比限制。吲哚菁绿血管造影(indocyanine green angiography,ICGA)是一种基于吲哚菁绿荧光剂和近红外线光学成像的血流可视化技术,能够清晰展示浅表组织的血管分布和皮瓣血运,辅助穿支定位和评估皮瓣的血流灌注情况[12]。本研究通过回顾ICGA辅助扩张皮瓣设计和切取的病例,探讨ICGA是否能够显示扩张皮瓣的穿支分支和血管吻合,帮助外科医师定位血管轴,精确指导回切设计,并在皮瓣转移后评估血流灌注,从而减少因血运不良引发的并发症。

    本回顾性观察性研究符合《赫尔辛基宣言》的基本原则,并获得中国医学科学院北京协和医学院(以下简称本单位)伦理委员会批准[批号:(2024)注册第(388)号]。患者对此项研究知情,并同意在不泄露其隐私的情况下对其病历资料进行分析、使用。

    纳入标准:(1)应用ICGA辅助扩张皮瓣设计与切取,用以修复瘢痕等病损的患者;(2)采用单侧回切法切取皮瓣。排除标准:临床资料不完整的患者。

    2019年4月—2023年8月,本单位收治19例符合入选标准患者,其中男8例、女11例,年龄3~38岁。患者瘢痕分布于头面部、躯干及四肢。共转移21个扩张皮瓣用于修复瘢痕切除后创面。1例患者移植3个皮瓣,用于修复热压伤后造成的面部瘢痕切除创面。

    将吲哚菁绿用灭菌注射用水稀释至2.5 mg/mL,按0.2 mg/kg的剂量经外周静脉快速注射,并立即用10 mL生理盐水冲洗静脉以确保药物完全进入循环。关闭手术室灯光,通过近红外激光激发血流中的吲哚菁绿产生荧光,同步启动录像设备记录扩张皮肤的血流荧光影像。显影过程分为动脉期与静脉期。动脉期可清晰呈现动脉网络,动脉血管显影顺序依次为扩张皮肤以外的穿支、扩张皮肤的穿支及其分支、分支间的血管吻合支。吲哚菁绿随血液回流至静脉后进入静脉期,动脉影像消退,扩张皮肤的浅表静脉逐渐显影,静脉网络清晰可见。动脉期的持续时间较短,而静脉期可持续较长时间。

    全面评估患者的一般状况及病损部位、大小、形状及周围组织情况,选择合适额定容量、形状的皮肤软组织扩张器。术中先切开皮肤及皮下组织,随后钝性剥离形成略大于皮肤软组织扩张器的皮下腔隙,将皮肤软组织扩张器平展置入,确保注射壶置于皮下浅层,然后分层缝合切口并固定皮肤软组织扩张器,必要时放置引流管。术后定期向皮肤软组织扩张器内注水,每次注水量为皮肤软组织扩张器容量的10%~15%,直至达到预定扩张量。

    1.5.1   创面床准备及扩张皮瓣设计

    切开皮肤及皮下组织,锐性分离并彻底切除瘢痕至正常组织层。根据瘢痕切除后形成创面的大小、形状和深度,设计扩张皮瓣。考虑到扩张皮瓣具有一定的回缩率(约20%),在设计皮瓣时,适当扩大皮瓣设计的面积,确保其提供足够的皮肤和软组织来覆盖创面。

    1.5.2   扩张皮瓣设计的校正

    在预设计的扩张皮瓣区域行ICGA,于动脉期快速定位1或2条目标穿支,其分支朝向皮瓣回切方向,并与邻近穿支分支形成血管吻合网络。术者在扩张皮肤上逐级标记目标穿支及其分支,确定皮瓣的动脉轴。进入静脉期后,观察动脉轴周围伴行的浅静脉,选择距离最近、走行方向一致的静脉作为静脉轴,以确保皮瓣的静脉回流,并在扩张皮肤上进行标记。ICGA结果由2名具有影像评估经验的外科医师进行独立分析,以确保评估的准确性和一致性。根据动脉轴和静脉轴的位置,调整皮瓣设计,确保皮瓣包含完整的动脉轴和静脉轴,并根据皮瓣血流情况合理调整回切终点,避免横断轴向血管。本研究中,21个扩张皮瓣均在ICGA辅助下成功定位共轴的动脉与静脉。

    1.5.3   皮瓣血运评估与转移

    根据调整后的皮瓣设计方案,采用单侧回切法切开皮肤及皮下组织,完整掀起皮瓣,将其转移至受区,用以修复瘢痕切除后创面。回切皮瓣面积为120~240 cm²。直接拉拢缝合供区创面。随后再次行ICGA评估皮瓣血流灌注情况,识别造影结束时荧光相对值<25%的区域,标记为血流灌注不足区域[12]。对于血流灌注不足区域,首先尝试调整皮瓣旋转角度或张力;若调整后血流灌注仍不理想,则根据创面修复需求,切除血流灌注不足区域或对该区域进行皮肤修薄及植皮处理,以确保皮瓣存活并达到最佳修复效果。

    1.5.4   术后处理

    术后即刻采用适当的压力包扎和固定。早期密切观察皮瓣血运,包括颜色、温度、肿胀程度等情况,必要时采用多普勒超声监测血流;保持皮瓣蒂部无张力,避免受压或扭曲,确保血供通畅。常规预防性使用抗生素,并根据创面渗出情况及时更换敷料,保持创面清洁干燥。妥善管理引流装置,保持引流通畅,密切观察引流液的颜色、量和性质,并根据引流情况决定拔管时间,以预防血肿、感染等并发症的发生。指导患者术后早期进行循序渐进的功能锻炼,防止关节僵硬及肌肉萎缩,同时避免过度活动或外力撞击皮瓣区域。根据患者个体情况制定个性化的随访计划。

    记录扩张皮瓣设计过程中ICGA的动脉期和静脉期持续时间。统计不同部位回切皮瓣的长宽比。Ⅱ期术后,观察皮瓣的血流灌注及存活情况,观察供区创面愈合情况及并发症发生情况。随访,观察患者皮瓣外观、色泽和质地。

    ICGA的动脉期持续时间为10~27(18±5)s;静脉期持续时间为78~116(100±10)s。头面部、躯干和四肢的回切皮瓣长宽比分别为1.22±0.32、1.63±0.12和1.15±0.21。Ⅱ期术后,1例患者皮瓣存在大面积血流灌注不足,通过比较转移皮瓣前后的ICGA图像,观察到皮瓣口角处与回切终点之间形成了张力线,遂松开口角处的缝线,皮瓣血运得以恢复;其余患者皮瓣血流灌注良好。患者皮瓣均完全成活;供区创面愈合良好,无并发症发生。随访0.5~14个月,所有患者皮瓣外观良好,色泽和质地与周围皮肤相近。

    例1

    女,31岁,入院时诊断为右侧大腿烫伤后瘢痕。体格检查显示右侧大腿区域存在21 cm×10 cm的白色瘢痕,质地柔软,未突出于皮肤表面,表面欠光滑,边界欠清晰。于右侧大腿埋置额定容量为800 mL长方形皮肤软组织扩张器行Ⅰ期手术。Ⅱ期术前行ICGA,扩张皮瓣区清晰显示轴向动脉和静脉影像,动脉期持续22 s,静脉期持续92 s。术中根据ICGA显影在扩张皮瓣上标记目标穿支及其伴行静脉的位置及走行,合理设计回切线位置。沿设计线切开皮肤及皮下组织,切取面积为240 cm²的扩张皮瓣,转移至右侧大腿瘢痕切除后的创面进行修复。行ICGA显示皮瓣血流灌注良好。术后皮瓣完全成活;供区创面愈合良好,无并发症发生。随访4个月,皮瓣外观良好,色泽和质地与周围皮肤相近。见图1

    图  1  吲哚菁绿血管造影(ICGA)辅助下设计切取扩张皮瓣修复例1患者右腿瘢痕切除创面的效果。1A.Ⅱ期术前,瘢痕及扩张皮瓣情况;1B.Ⅱ期术前,扩张皮瓣的ICGA动脉期显像,其中红色箭头指示动脉穿支,白色虚线为回切设计线,白色箭头指示回切终点;1C.Ⅱ期术前,扩张皮瓣的ICGA静脉期显像,黄色箭头指示浅表静脉,白色虚线和白色箭头指示内容同前;1D.Ⅱ期术前皮瓣设计,红色箭头指示回切终点;1E.转移皮瓣后再次行ICGA检查,血流灌注情况良好;1F.皮瓣转移术后即刻

    例2

    男,17岁,入院时诊断为左侧面部烧伤后瘢痕。体格检查显示左侧面颊部及颏部区域存在15 cm×8 cm的暗红色片状不规则瘢痕,微隆起于皮肤表面,瘢痕表面较为平整。于左颈部埋置额定容量为200 mL长方形皮肤软组织扩张器行Ⅰ期手术。Ⅱ期术前行ICGA,扩张皮瓣区域清晰显示轴向动脉和静脉影像,其中动脉期持续19 s,静脉期持续93 s。术中依据ICGA结果,在扩张皮瓣上精确标定目标穿支及其伴行静脉的位置与走行,并据此合理设计回切线。沿设计线切开皮肤及皮下组织,将面积约140 cm²的扩张皮瓣转移至左侧面部瘢痕切除后的创面。术后即刻,观察到皮瓣远端颜色进行性加深,随即再次行ICGA检查,观察到皮瓣口角处与回切终点之间形成了张力线,松开口角处缝线后,第3次行ICGA显示皮瓣血流灌注恢复良好。术后皮瓣完全成活,供区创面愈合良好,未出现并发症。随访12个月,皮瓣外观良好,色泽和质地与周围皮肤相近。见图2

    图  2  吲哚菁绿血管造影(ICGA)辅助下设计切取扩张皮瓣修复例2患者面部瘢痕切除创面的效果。2A.Ⅱ期术前,瘢痕情况及扩张皮瓣设计;2B.Ⅱ期术前,扩张皮瓣的ICGA动脉期显像,红色箭头指示穿支及其分支;2C.Ⅱ期术前,扩张皮瓣的ICGA静脉期显像,黄色箭头指示图2C中穿支及其分支的伴行浅表静脉;2D.Ⅱ期术中,首次ICGA检查显示回切皮瓣血流灌注可;2E.皮瓣与创面切口完全缝合后,二次ICGA检查显示皮瓣血流灌注情况,白色虚线圈内区域(患者下唇部)存在动脉血流灌注不足;2F.松开口角处缝线后,三次ICGA检查显示白色虚线圈内下唇区域血流灌注改善;2G.术后12个月随访,皮瓣外观良好,色泽和质地与周围皮肤相近

    随着对穿支解剖认知的不断深入,临床医师对穿支皮瓣解剖的关注点已从主干穿支转移到穿支分支的显微解剖层面,穿支分支皮瓣这一概念也逐渐进入整形外科医师的视野并受到广泛关注[13, 14]。在皮肤软组织扩张器的置入过程中,由于基底穿支已被剥离结扎,扩张皮肤内主要分布着周围穿支的分支血管。若能准确定位这些穿支分支血管,即可按照轴型皮瓣的设计原则进行扩张皮瓣设计,这不仅提高了皮瓣设计的灵活性,也提升了扩张皮瓣的转移效率[15]。ICGA作为观察穿支分支皮瓣和超薄皮瓣穿支分支分布的常用方法[13],能够清晰显示直径<0.2 mm的微小血管。然而,受近红外线透射深度的限制,ICGA仅能显示厚度<1 cm的皮肤血管[13]。本团队研究显示,得益于皮肤扩张过程中的变薄机制[16],ICGA可清晰显示身体各部位扩张皮瓣的动静脉网络,包括穿支分支及血管吻合情况。扩张后皮肤厚度降低,尤其是脂肪层和真皮层变薄,使得ICGA能够清晰显示位于脂肪层内的穿支分支和真皮下的血管吻合[17, 18, 19]。鉴于未扩张皮肤厚度较大导致ICGA显像清晰度欠佳,本研究未在扩张前应用ICGA进行穿支定位。总之,本研究将ICGA应用于扩张皮瓣的微血管观察,成功辅助外科医师定位动脉血管轴,并精确指导了回切皮瓣设计。

    术中,SPY Elite系统(ICGA仪器自带软件)可在ICGA过程中实时显示荧光强度曲线[20, 21],自荧光开始显示至荧光峰值可视为动脉期,随后为静脉期[22, 23]。ICGA动脉期持续时间较短,因此在有限时间内定位合适的穿支、穿支分支及真性血管吻合形成的动脉轴具有一定挑战性[24]。为提高血管信息捕捉效率,医师于术前可在扩张皮瓣上预标记回切线作为参照,以便快速定位穿支及其分支位置并标记血管走行。本团队实践表明,外科医师经过2或3次操作练习即可熟练掌握动脉轴定位技术,并在扩张皮肤上做出准确标记。相比之下,ICGA静脉期持续时间较长,静脉网络显示充分,便于外科医师寻找与动脉伴行的浅静脉。一般来讲,扩张皮瓣远端出现静脉淤血的概率高于动脉缺血[25],因此准确定位伴行静脉对确保皮瓣成活至关重要[26]。ICGA可在单次检测周期内同时显示动静脉分布,有助于观察目标穿支位置及走行,精确设计回切终点,避免横断关键血管,确保皮瓣充分血流灌注和引流。

    在本研究纳入的21个扩张皮瓣中,均成功定位到了动静脉共同的血管轴。但前述现象并非巧合,从ICGA显像结果可见穿支向多个方向发出分支,这一现象与Kimura等[27]的研究结果一致。此外,皮肤软组织扩张术可产生延迟效应,这一现象在扩张前后的ICGA图像对比中得到证实:扩张后穿支体区之间形成了稳定的真性血管吻合。上述扩张皮瓣血管解剖特点确保了扩张皮肤上存在多条“高速通道”,为血管轴的选择提供了多元化可能。ICGA造影结果可辅助调整扩张皮瓣的设计,优化回切点位置。回切点的位置决定了皮瓣的长宽比,沿穿支-真性吻合-穿支轴方向设计的皮瓣突破了任意型皮瓣长宽比的限制,使设计更加灵活,血运更加可靠。本组病例中所有长宽比>1∶1的皮瓣均完全成活。然而,若术中无法定位动静脉共同血管轴,建议调整皮瓣设计方案或回归任意型皮瓣设计,必要时可在扩张皮肤上进行额外延迟[8]

    ICGA在修复重建外科中的主要应用场景之一是皮瓣血流灌注评估[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]。得益于吲哚菁绿的短半衰期特性[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30],术者可多次使用ICGA辅助皮瓣设计和评估转移后血运情况[31]。本研究中,典型病例中的例2患者采用颈部扩张皮瓣修复面部瘢痕切除后创面,术中行ICGA检测观察到回切皮瓣存在大面积血流灌注不足区域。通过对比分析多次ICGA血流灌注结果,术者及时调整皮瓣缝合方案,最终成功改善了皮瓣血流灌注,确保了皮瓣成活。基于临床经验,本研究团队提出了ICGA指导下处理血流灌注不足区域的处理原则:若皮瓣调整无法完全解决血流灌注不足问题,可根据临床需要切除血流灌注不足区域或将该区域修薄后植皮[32],以最大限度减少术后皮瓣血运相关并发症。尽管ICGA可以为皮瓣血运提供客观评价,然而ICGA在皮瓣血运评估方面存在假阳性的问题。皮瓣转移后,血流灌注情况随时间在不断变化[33, 34],尤其是扩张皮瓣血运稳定的时间可能在转移后的6~24 h,术后即刻的ICGA不能反映皮瓣最终的血流灌注情况。因此,临床医师还需要依据经验来做出合理的临床决策。

    本研究存在一些局限性,如回顾性、单中心研究、样本量较小以及研究区域主要集中于头面部等。未来研究需要扩大样本量,开展多中心前瞻性随机对照试验,并与红外线热成像技术[35]等其他无创血管探测技术进行对比,为证实ICGA在扩张皮瓣应用中的有效性提供更高级别的临床证据。

    综上所述,ICGA技术是辅助扩张皮瓣设计和切取的可靠工具,可清晰显示扩张皮瓣上的穿支分支和血管吻合情况,准确定位血管轴;同时,ICGA技术还可评估转移皮瓣的血流灌注情况。扩张皮瓣的精确设计和血运评估有助于减少皮瓣移植后发生坏死等并发症,提高手术安全性。通过充分利用其多重功能,ICGA能够为扩张皮瓣切取提供全程导航。

    所有作者声明不存在利益冲突
  • 参考文献(70)

    [1] FinnertyCC, JeschkeMG, BranskiLK, et al. Hypertrophic scarring: the greatest unmet challenge after burn injury[J]. Lancet, 2016,388(10052):1427-1436. DOI: 10.1016/S0140-6736(16)31406-4.
    [2] MoiemenN, MathersJ, JonesL, et al. Pressure garment to prevent abnormal scarring after burn injury in adults and children: the PEGASUS feasibility RCT and mixed-methods study[J]. Health Technol Assess, 2018,22(36):1-162. DOI: 10.3310/hta22360.
    [3] De DeckerI, BeeckmanA, HoeksemaH, et al. Pressure therapy for scars: myth or reality? A systematic review[J]. Burns, 2023,49(4):741-756. DOI: 10.1016/j.burns.2023.03.007.
    [4] LinaresHA, LarsonDL, Willis-GalstaunBA. Historical notes on the use of pressure in the treatment of hypertrophic scars or keloids[J]. Burns,1993, 19(1):17-21. DOI: 10.1016/0305-4179(93)90095-p.
    [5] MustoeTA, CooterRD, GoldMH, et al. International clinical recommendations on scar management[J]. Plast Reconstr Surg, 2002,110(2):560-571. DOI: 10.1097/00006534-200208000-00031.
    [6] Li-TsangCW, FengB, HuangL, et al. A histological study on the effect of pressure therapy on the activities of myofibroblasts and keratinocytes in hypertrophic scar tissues after burn[J]. Burns, 2015,41(5):1008-1016. DOI: 10.1016/j.burns.2014.11.017.
    [7] SuoH, YangZR, DuK, et al. Pathological-microenvironment responsive injectable GelMA hydrogel with visualized biodegradation for pressure-assisted treatment of hypertrophic scars[J]. Int J Biol Macromol, 2025,292:139175. DOI: 10.1016/j.ijbiomac.2024.139175.
    [8] 刘宁, 王鹏, 蔡瑞昭, 等. 体外构建3D细胞压力培养模型研究压力对增生性瘢痕成纤维细胞的作用[J/CD].中华损伤与修复杂志(电子版),2021,16(2):132-139. DOI: 10.3877/cma.j.issn.1673-9450.2021.02.008.
    [9] WangZ, ZhaoF, XuC, et al. Metabolic reprogramming in skin wound healing[J/OL]. Burns Trauma, 2024,12:tkad047[2025-02-15]. https://pubmed.ncbi.nlm.nih.gov/38179472/. DOI: 10.1093/burnst/tkad047.
    [10] QiuX, LuoH, HuangG. Roles of negative pressure wound therapy for scar revision[J]. Front Physiol, 2023,14:1194051. DOI: 10.3389/fphys.2023.1194051.
    [11] LiuB, LiuY, WangL, et al. RNA-seq-based analysis of the hypertrophic scarring with and without pressure therapy in a Bama minipig model[J]. Sci Rep, 2018, 8(1):11831. DOI: 10.1038/s41598-018-29840-6.
    [12] GirnitaL, WorrallC, TakahashiS, et al. Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation[J]. Cell Mol Life Sci, 2014,71(13):2403-2427. DOI: 10.1007/s00018-013-1514-y.
    [13] YangY, WangD, ZhangC, et al. Piezo1 mediates endothelial atherogenic inflammatory responses via regulation of YAP/TAZ activation[J]. Hum Cell, 2022,35(1):51-62. DOI: 10.1007/s13577-021-00600-5.
    [14] LeeHJ, JangYJ. Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids[J]. Int J Mol Sci, 2018,19(3):711.DOI: 10.3390/ijms19030711.
    [15] HosseiniM, BrownJ, KhosrotehraniK, et al. Skin biomechanics: a potential therapeutic intervention target to reduce scarring[J/OL]. Burns Trauma, 2022,10:tkac036[2025-02-15]. https://pubmed.ncbi.nlm.nih.gov/36017082/. DOI: 10.1093/burnst/tkac036.
    [16] KimJY, WillardJJ, SuppDM, et al. Burn scar biomechanics after pressure garment therapy[J]. Plast Reconstr Surg, 2015,136(3):572-581. DOI: 10.1097/PRS.0000000000001507.
    [17] DeBrulerDM, BaumannME, BlackstoneBN, et al. Role of early application of pressure garments following burn injury and autografting[J]. Plast Reconstr Surg, 2019,143(2):310e-321e. DOI: 10.1097/PRS.0000000000005270.
    [18] RenòF, GrazianettiP, CannasM. Effects of mechanical compression on hypertrophic scars: prostaglandin E2 release[J]. Burns, 2001,27(3):215-218. DOI: 10.1016/s0305-4179(00)00101-7.
    [19] LuanX, ChenP, LiY, et al. TNF-α/IL-1β-licensed hADSCs alleviate cholestatic liver injury and fibrosis in mice via COX-2/PGE2 pathway[J]. Stem Cell Res Ther, 2023,14(1):100. DOI: 10.1186/s13287-023-03342-3.
    [20] 庄嘉宝, 胥春. 机械力刺激诱导机体组织炎症反应机制研究进展[J].医用生物力学,2017,32(5):476-480. DOI: 10.16156/j.1004-7220.2017.05.015.
    [21] 单圣周机械力调控巨噬细胞极化影响创面修复的研究上海上海交通大学2017

    单圣周. 机械力调控巨噬细胞极化影响创面修复的研究[D].上海:上海交通大学, 2017.

    [22] SinghAK, ZajdelJ, MirrasekhianE, et al. Prostaglandin-mediated inhibition of serotonin signaling controls the affective component of inflammatory pain[J]. J Clin Invest, 2017,127(4):1370-1374. DOI: 10.1172/JCI90678.
    [23] EishiK, BaeSJ, OgawaF, et al. Silicone gel sheets relieve pain and pruritus with clinical improvement of keloid: possible target of mast cells[J]. J Dermatolog Treat, 2003,14(4):248-252. DOI: 10.1080/09546630310016808.
    [24] CarneyBC, LiuZ, AlkhalilA, et al. Elastin is differentially regulated by pressure therapy in a porcine model of hypertrophic scar[J]. J Burn Care Res, 2017, 38(1):28-35. DOI: 10.1097/BCR.0000000000000413.
    [25] TravisTE, GhassemiP, PrindezeNJ, et al. Matrix metalloproteinases are differentially regulated and responsive to compression therapy in a red duroc model of hypertrophic scar[J]. Eplasty, 2018,18:e1.
    [26] ZhangT, WangXF, WangZC, et al. Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation[J]. Biomed Pharmacother, 2020,129:110287. DOI: 10.1016/j.biopha.2020.110287.
    [27] HuangD, LiuY, HuangY, et al. Mechanical compression upregulates MMP9 through SMAD3 but not SMAD2 modulation in hypertrophic scar fibroblasts[J]. Connect Tissue Res, 2014,55(5/6):391-396. DOI: 10.3109/03008207.2014.959118.
    [28] PowellHM, NedelecB. Mechanomodulation of burn scarring via pressure therapy[J]. Adv Wound Care (New Rochelle), 2022,11(4):179-191. DOI: 10.1089/wound.2021.0061.
    [29] MacintyreL. New calibration method for I-scan sensors to enable the precise measurement of pressures delivered by 'pressure garments'[J]. Burns, 2011,37(7):1174-1181. DOI: 10.1016/j.burns.2011.06.008.
    [30] HarrisIM, LeeKC, DeeksJJ, et al. Pressure-garment therapy for preventing hypertrophic scarring after burn injury[J]. Cochrane Database Syst Rev, 2024,1(1):CD013530. DOI: 10.1002/14651858.CD013530.pub2.
    [31] AiJW, LiuJT, PeiSD, et al. The effectiveness of pressure therapy (15-25 mmHg) for hypertrophic burn scars: A systematic review and meta-analysis[J]. Sci Rep, 2017,7:40185. DOI: 10.1038/srep40185.
    [32] MalaraMM, KimJY, ClarkJA, et al. Structural, chemical, and mechanical properties of pressure garments as a function of simulated use and repeated laundering[J]. J Burn Care Res, 2018,39(4):562-571. DOI: 10.1093/jbcr/irx018.
    [33] MacintyreL, DahaleM, RaeM. Impact of moisture on the pressure delivering potential of pressure garments[J]. J Burn Care Res, 2016,37(4):e365-373. DOI: 10.1097/BCR.0000000000000272.
    [34] KoudougouC, HuonJF, PraudM, et al. Conception and use of a custom-made facial mask for pressure therapy in complex facial wounds[J]. J Stomatol Oral Maxillofac Surg, 2020,121(3):278-281. DOI: 10.1016/j.jormas.2019.10.012.
    [35] EdwickDO, HinceDA, RawlinsJM, et al. Randomized controlled trial of compression interventions for managing hand burn edema, as measured by bioimpedance spectroscopy[J]. J Burn Care Res, 2020,41(5):992-999. DOI: 10.1093/jbcr/iraa104.
    [36] ParryI, HanleyC, NiszczakJ, et al. Harnessing the Transparent Face Orthosis for facial scar management: a comparison of methods[J]. Burns, 2013,39(5):950-956. DOI: 10.1016/j.burns.2012.11.009.
    [37] WeiY, Li-TsangC, WuJ, et al. A finite element model of the 3D-printed transparent facemask for applying pressure therapy[J]. Clin Biomech (Bristol), 2021,87:105414. DOI: 10.1016/j.clinbiomech.2021.105414.
    [38] HwangSJ, SeoJ, ChaJY, et al. Utility of customized 3D compression mask with pressure sensors on facial burn scars: a single-blinded, randomized controlled trial[J]. Burns, 2024,50(7):1885-1897. DOI: 10.1016/j.burns.2024.05.021.
    [39] KantSB, CollaC, Van den KerckhoveE, et al. Satisfaction with facial appearance and quality of life after treatment of face scars with a transparent facial pressure mask[J]. Facial Plast Surg, 2018,34(4):394-399. DOI: 10.1055/s-0038-1648249.
    [40] De HenauM, van KuijkS, CollaC, et al. Pressure masks for facial scar treatment after oncological reconstruction: long-term patient satisfaction and quality of life[J]. Facial Plast Surg, 2024,40(1):36-45. DOI: 10.1055/a-2035-4468.
    [41] NagataT, MiuraK, HommaY, et al. Comparison between negative-pressure fixation and film dressing in wound management after tissue expansion: a randomized controlled trial[J]. Plast Reconstr Surg, 2018,142(1):37-41. DOI: 10.1097/PRS.0000000000004470.
    [42] PruksapongC, BurusapatC, HongkarnjanakulN. Efficacy of silicone gel versus silicone gel sheet in hypertrophic scar prevention of deep hand burn patients with skin graft: a prospective randomized controlled trial and systematic review[J]. Plast Reconstr Surg Glob Open, 2020,8(10):e3190. DOI: 10.1097/GOX.0000000000003190.
    [43] WangJ, WuJ, XuM, et al. A comprehensive reconstruction strategy for moderate to severe faciocervical scar contractures[J]. Lasers Med Sci, 2021,36(6):1275-1282. DOI: 10.1007/s10103-020-03178-w.
    [44] ZhangP, WuQ, DingH, et al. Efficacy and safety of pressure therapy alone and in combination with silicone in prevention of hypertrophic scars: a systematic review with meta-analysis of randomized controlled trials[J]. Aesthetic Plast Surg, 2023,47(5):2159-2174. DOI: 10.1007/s00266-023-03591-w.
    [45] WisemanJ, SimonsM, KimbleR, et al. Effectiveness of topical silicone gel and pressure garment therapy for burn scar prevention and management in children 12-months postburn: A parallel group randomised controlled trial[J]. Clin Rehabil, 2021,35(8):1126-1141. DOI: 10.1177/02692155211020351.
    [46] 李娟, 白永强, 吕桂玲, 等. 不同压力弹力绷带对抑制瘢痕增生的影响[J].中国组织工程研究与临床康复,2009,13(38):7583-7586. DOI: 10.3969/j.issn.1673-8225.2009.38.041.
    [47] KantakNA, MistryR, HalvorsonEG. A review of negative-pressure wound therapy in the management of burn wounds[J]. Burns, 2016,42(8):1623-1633. DOI: 10.1016/j.burns.2016.06.011.
    [48] TimmermansFW, MokkenSE, SmitJM, et al. The impact of incisional negative pressure wound therapy on scar quality and patient-reported outcomes: a within-patient-controlled, randomised trial[J]. Wound Repair Regen, 2022,30(2):210-221. DOI: 10.1111/wrr.13001.
    [49] LiuY, XuM, WangZ, et al. The effect of incisional negative pressure wound therapy on the improvement of postoperative cosmetic suture wounds and scar hyperplasia[J]. Int Wound J, 2023,20(8):3081-3087. DOI: 10.1111/iwj.14183.
    [50] MonstreyS, MiddelkoopE, VranckxJJ, et al. Updated scar management practical guidelines: non-invasive and invasive measures[J]. J Plast Reconstr Aesthet Surg, 2014,67(8):1017-1025. DOI: 10.1016/j.bjps.2014.04.011.
    [51] LiP, Li-TsangCWP, DengX, et al. The recovery of post-burn hypertrophic scar in a monitored pressure therapy intervention programme and the timing of intervention[J]. Burns, 2018,44(6):1451-1467. DOI: 10.1016/j.burns.2018.01.008.
    [52] Van den KerckhoveE, StappaertsK, FieuwsS, et al. The assessment of erythema and thickness on burn related scars during pressure garment therapy as a preventive measure for hypertrophic scarring[J]. Burns, 2005,31(6):696-702. DOI: 10.1016/j.burns.2005.04.014.
    [53] RockwellWB, CohenIK, EhrlichHP. Keloids and hypertrophic scars: a comprehensive review[J]. Plast Reconstr Surg,1989,84(5):827-837. DOI: 10.1097/00006534-198911000-00021.
    [54] BaurPS, LarsonDL, StaceyTR, et al. Ultrastructural analysis of pressure-treated human hypertrophic scars[J]. J Trauma, 1976,16(12):958-967. DOI: 10.1097/00005373-197612000-00004.
    [55] LeeSY, ChoYS, JooSY, et al. Comparison between the portable pressure measuring device and PicoPress® for garment pressure measurement on hypertrophic burn scar during compression therapy[J]. Burns, 2021, 47(7):1621-1626. DOI: 10.1016/j.burns.2021.01.018.
    [56] GieleH, LiddiardK, BoothK, et al. Anatomical variations in pressures generated by pressure garments[J]. Plast Reconstr Surg, 1998,101(2):399-406; discussion 407. DOI: 10.1097/00006534-199802000-00021.
    [57] CandyLH, CeciliaLT, PingZY. Effect of different pressure magnitudes on hypertrophic scar in a Chinese population[J]. Burns, 2010,36(8):1234-1241. DOI: 10.1016/j.burns.2010.05.008.
    [58] KetchumLD, CohenIK, MastersFW. Hypertrophic scars and keloids. A collective review[J]. Plast Reconstr Surg, 1974,53(2):140-154. DOI: 10.1097/00006534-197402000-00004.
    [59] BloemenMC, van der VeerWM, UlrichMM, et al. Prevention and curative management of hypertrophic scar formation[J]. Burns, 2009,35(4):463-475. DOI: 10.1016/j.burns.2008.07.016.
    [60] AtiyehBS. Nonsurgical Management of hypertrophic scars: evidence-based therapies, standard practices, and emerging methods[J]. Aesthetic Plast Surg, 2020,44(4):1320-1344. DOI: 10.1007/s00266-020-01820-0.
    [61] KantS, van den KerckhoveE, CollaC, et al. Duration of scar maturation: retrospective analyses of 361 hypertrophic scars over 5 years[J]. Adv Skin Wound Care, 2019,32(1):26-34. DOI: 10.1097/01.ASW.0000547415.38888.c4.
    [62] AnzarutA, OlsonJ, SinghP, et al. The effectiveness of pressure garment therapy for the prevention of abnormal scarring after burn injury: a meta-analysis[J]. J Plast Reconstr Aesthet Surg, 2009,62(1):77-84. DOI: 10.1016/j.bjps.2007.10.052.
    [63] AtiyehBS. Nonsurgical management of hypertrophic scars: evidence-based therapies, standard practices, and emerging methods[J].Aesthetic Plastic Surgery, 2007, 31(5):468-492.DOI: 10.1007/s00266-006-0253-y.
    [64] ArnoAI, GauglitzGG, BarretJP, et al. Up-to-date approach to manage keloids and hypertrophic scars: a useful guide[J]. Burns, 2014,40(7):1255-1266. DOI: 10.1016/j.burns.2014.02.011.
    [65] CoghlanN, CopleyJ, AplinT, et al. Patient experience of wearing compression garments post burn injury: a review of the literature[J]. J Burn Care Res, 2017,38(4):260-269. DOI: 10.1097/BCR.0000000000000506.
    [66] UsluA, SürücüA, KorkmazMA, et al. Acquired localized hypertrichosis following pressure garment and/or silicone therapy in burn patients[J]. Ann Plast Surg, 2019,82(2):158-161. DOI: 10.1097/SAP.0000000000001686.
    [67] RappoportK, MüllerR, Flores-MirC. Dental and skeletal changes during pressure garment use in facial burns: a systematic review[J]. Burns, 2008, 34(1):18-23. DOI: 10.1016/j.burns.2007.07.003.
    [68] FrickeNB, OmnellML, DutcherKA, et al. Skeletal and dental disturbances in children after facial burns and pressure garment use: a 4-year follow-up[J]. J Burn Care Rehabil, 1999,20(3):239-249. DOI: 10.1097/00004630-199905000-00016.
    [69] HubbardM, MastersIB, WilliamsGR, et al. Severe obstructive sleep apnoea secondary to pressure garments used in the treatment of hypertrophic burn scars[J]. Eur Respir J, 2000,16(6):1205-1207. DOI: 10.1034/j.1399-3003.2000.16f29.x.
    [70] GuptaS, SharmaVK. Standard guidelines of care: keloids and hypertrophic scars[J]. Indian J Dermatol Venereol Leprol, 2011,77(1):94-100. DOI: 10.4103/0378-6323.74968.
  • 加载中
图(1)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-15
  • 网络出版日期:  2025-04-02

目录

/

返回文章
返回