留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲基丙烯酸酐化明胶水凝胶的孔隙率与杨氏模量对小鼠骨髓间充质干细胞生物学行为的影响

孔玥 田丰 刘清华 张超 宋薇 孔毅 李曌 恩和吉日嘎拉 黄沙

孔玥, 田丰, 刘清华, 等. 甲基丙烯酸酐化明胶水凝胶的孔隙率与杨氏模量对小鼠骨髓间充质干细胞生物学行为的影响[J]. 中华烧伤与创面修复杂志, 2025, 41(10): 958-967. DOI: 10.3760/cma.j.cn501225-20250630-00286.
引用本文: 孔玥, 田丰, 刘清华, 等. 甲基丙烯酸酐化明胶水凝胶的孔隙率与杨氏模量对小鼠骨髓间充质干细胞生物学行为的影响[J]. 中华烧伤与创面修复杂志, 2025, 41(10): 958-967. DOI: 10.3760/cma.j.cn501225-20250630-00286.
Kong Y,Tian F,Liu QH,et al.Influence of porosity and Young's modulus of gelatin methacrylate anhydride hydrogels on the biological behavior of mouse bone marrow mesenchymal stem cells[J].Chin J Burns Wounds,2025,41(10):958-967.DOI: 10.3760/cma.j.cn501225-20250630-00286.
Citation: Kong Y,Tian F,Liu QH,et al.Influence of porosity and Young's modulus of gelatin methacrylate anhydride hydrogels on the biological behavior of mouse bone marrow mesenchymal stem cells[J].Chin J Burns Wounds,2025,41(10):958-967.DOI: 10.3760/cma.j.cn501225-20250630-00286.

甲基丙烯酸酐化明胶水凝胶的孔隙率与杨氏模量对小鼠骨髓间充质干细胞生物学行为的影响

doi: 10.3760/cma.j.cn501225-20250630-00286
基金项目: 

国家自然科学基金面上项目 82472166, 32471432

北京市自然科学基金-昌平创新联合基金资助项目 L234066

内蒙古自治区自然科学基金项目 2025MS08143

内蒙古自治区高等学校青年科技英才支持计划 NJYT24031

内蒙古医科大学博士启动基金 YKD2023BSQD012

内蒙古医科大学校级面上项目 YKD2024MS006

中央引导地方科技资金支持项目 2024ZY0127

详细信息
    通讯作者:

    恩和吉日嘎拉,Email:572563157@qq.com

    黄沙,Email:stellarahuang@sina.com

Influence of porosity and Young's modulus of gelatin methacrylate anhydride hydrogels on the biological behavior of mouse bone marrow mesenchymal stem cells

Funds: 

General Program of National Natural Science Foundation of China 82472166, 32471432

Beijing Natural Science Foundation-Changping Innovation Joint Fund L234066

Natural Science Foundation Project of Inner Mongolia Autonomous Region 2025MS08143

Support Program for Young Science and Technology Talents in Higher Education Institutions of Inner Mongolia Autonomous Region NJYT24031

Doctoral Start-up Fund of Inner Mongolia Medical University YKD2023BSQD012

A University-level General Project of Inner Mongolia Medical University YKD2024MS006

Guiding Fund of Central Government for Supporting the Development of the Local Science and Technology 2024ZY0127

More Information
  • 摘要:   目的  探究甲基丙烯酸酐化明胶(GelMA)水凝胶的孔隙率与杨氏模量对小鼠骨髓间充质干细胞(BMSC)生物学行为的影响,为开发用于皮肤创面修复的组织工程支架提供理论基础。  方法  该研究为实验研究。将由50 g/L的GelMA溶液光交联30、60 s及150 g/L的GelMA溶液光交联30、60 s制成的GelMA水凝胶分别设为低浓度短时组、低浓度长时组及高浓度短时组、高浓度长时组,使用Image J 1.54软件测量并计算4组水凝胶冷冻干燥48 h后的孔隙率,采用杨氏模量测定仪检测4组水凝胶的杨氏模量,评估前述孔隙率与杨氏模量的相关性并建立二者之间的预测模型,计算4组水凝胶在磷酸盐缓冲液中浸泡7 d后的剩余质量百分比。从10只雌雄不明1 d龄C57BL/6小鼠股骨分离BMSC,将由BMSC与50 g/L的GelMA溶液混合后光交联30、60 s及BMSC与150 g/L的GelMA溶液混合后光交联30、60 s制成的载细胞GelMA水凝胶分别设为低浓度短时载细胞组、低浓度长时载细胞组、高浓度短时载细胞组、高浓度长时载细胞组,采用细胞活/死试剂盒检测4个载细胞组水凝胶培养7 d后细胞存活情况并计算细胞存活率;将4个载细胞组水凝胶成骨诱导培养10 d后,采用实时荧光定量反转录PCR法检测细胞中成骨相关因子Runt相关转录因子2(Runx2)、碱性磷酸酶(ALP)及干性相关因子SRY盒转录因子2(Sox2)、Nanog的mRNA表达,采用免疫荧光法检测细胞中Runx2与Nanog的蛋白表达。除蛋白表达(定性观察)外,其余指标每组样本数均为3。  结果  低浓度短时组、低浓度长时组、高浓度短时组、高浓度长时组水凝胶冷冻干燥48 h后的孔隙率依次降低,分别为(92.7±0.9)%、(85.0±1.8)%、(68.6±1.2)%、(56.3±5.8)%;杨氏模量依次升高,分别为(5.933±0.020)、(7.803±0.089)、(20.772±0.106)、(22.498±0.060)kPa。除高浓度长时组与高浓度短时组间水凝胶杨氏模量(P>0.05)外,其余组间水凝胶的孔隙率或杨氏模量两两比较,差异均有统计学意义(P<0.05);水凝胶的孔隙率与杨氏模量呈显著负相关(R2=0.91,P<0.05),并据此建立了二者之间的线性方程预测模型。浸泡7 d后,低浓度长时组、高浓度短时组、高浓度长时组水凝胶剩余质量百分比均显著高于低浓度短时组(P<0.05),高浓度长时组水凝胶剩余质量百分比显著高于低浓度长时组(P<0.05)。培养7 d后,4个载细胞组水凝胶中均可见大量活细胞,组间细胞存活率总体比较,差异无统计学意义(P>0.05)。成骨诱导培养10 d后,高浓度长时载细胞组水凝胶的细胞中Runx2与ALP的mRNA表达均显著高于其余3个载细胞组(P<0.05),低浓度短时载细胞组水凝胶的细胞中Sox2与Nanog的mRNA表达均显著高于其余3个载细胞组(P<0.05);高浓度长时载细胞组水凝胶的细胞中Runx2的蛋白表达最高,低浓度短时载细胞组水凝胶的细胞中Nanog的蛋白表达最高。  结论  GelMA水凝胶的孔隙率与杨氏模量通过协同作用调控小鼠BMSC的生物学行为,其中高孔隙率-低杨氏模量利于干性维持,而低孔隙率-高杨氏模量驱动成骨分化。

     

  • 参考文献(39)

    [1] YueK,Trujillo-de SantiagoG,AlvarezMM,et al.Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J].Biomaterials,2015,73:254-271.DOI: 10.1016/j.biomaterials.2015.08.045.
    [2] ZhuY,YuX,LiuH,et al.Strategies of functionalized GelMA-based bioinks for bone regeneration: recent advances and future perspectives[J].Bioact Mater,2024,38:346-373.DOI: 10.1016/j.bioactmat.2024.04.032.
    [3] KurianAG,SinghRK,PatelKD,et al.Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics[J].Bioact Mater,2022,8:267-295.DOI: 10.1016/j.bioactmat.2021.06.027.
    [4] KlotzBJ,GawlittaD,RosenbergAJWP,et al.Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair[J].Trends Biotechnol,2016,34(5):394-407.DOI: 10.1016/j.tibtech.2016.01.002.
    [5] ZhouX,CuiH,NowickiM,et al.Three-dimensional-bioprinted dopamine-based matrix for promoting neural regeneration[J].ACS Appl Mater Interfaces,2018,10(10):8993-9001.DOI: 10.1021/acsami.7b18197.
    [6] ChenM,ZhongM,JohnsonJA.Light-controlled radical polymerization: mechanisms, methods, and applications[J].Chem Rev,2016,116(17):10167-10211.DOI: 10.1021/acs.chemrev.5b00671.
    [7] ZhaoX,LangQ,YildirimerL,et al.Photocrosslinkable gelatin hydrogel for epidermal tissue engineering[J].Adv Healthc Mater,2016,5(1):108-118.DOI: 10.1002/adhm.201500005.
    [8] XiaoS,ZhaoT,WangJ,et al.Gelatin methacrylate (GelMA)-based hydrogels for cell transplantation: an effective strategy for tissue engineering[J].Stem Cell Rev Rep,2019,15(5):664-679.DOI: 10.1007/s12015-019-09893-4.
    [9] HanY,LiX,ZhangY,et al.Mesenchymal stem cells for regenerative medicine[J].Cells,2019,8(8):886.DOI: 10.3390/cells8080886.
    [10] HoangDM,PhamPT,BachTQ,et al.Stem cell-based therapy for human diseases[J].Signal Transduct Target Ther,2022,7(1):272.DOI: 10.1038/s41392-022-01134-4.
    [11] MeesukL,SuwanprateebJ,ThammarakcharoenF,et al.Osteogenic differentiation and proliferation potentials of human bone marrow and umbilical cord-derived mesenchymal stem cells on the 3D-printed hydroxyapatite scaffolds[J].Sci Rep,2022,12(1):19509.DOI: 10.1038/s41598-022-24160-2.
    [12] LuW,ZengM,LiuW,et al.Human urine-derived stem cell exosomes delivered via injectable GelMA templated hydrogel accelerate bone regeneration[J].Mater Today Bio,2023,19:100569.DOI: 10.1016/j.mtbio.2023.100569.
    [13] SeligM,LauerJC,HartML,et al.Mechanotransduction and stiffness-sensing: mechanisms and opportunities to control multiple molecular aspects of cell phenotype as a design cornerstone of cell-instructive biomaterials for articular cartilage repair[J].Int J Mol Sci,2020,21(15):5399.DOI: 10.3390/ijms21155399.
    [14] 梁莉婷,宋薇,张超,等.原位交联含氧化石墨烯的甲基丙烯酸酐化明胶水凝胶对小鼠全层皮肤缺损创面血管化的影响[J].中华烧伤与创面修复杂志,2022,38(7):616-628.DOI: 10.3760/cma.j.cn501225-20220314-00063.
    [15] 恩和吉日嘎拉,张熠杰,李建军,等.生物三维打印类细胞外基质硬度对骨髓间充质干细胞向皮肤附属器细胞分化的影响[J].中华烧伤杂志,2020,36(11):1013-1023.DOI: 10.3760/cma.j.cn501120-20200811-00375.
    [16] LiS,SunJ,YangJ,et al.Gelatin methacryloyl (GelMA) loaded with concentrated hypoxic pretreated adipose-derived mesenchymal stem cells(ADSCs) conditioned medium promotes wound healing and vascular regeneration in aged skin[J].Biomater Res,2023,27(1):11.DOI: 10.1186/s40824-023-00352-3.
    [17] NicholJW,KoshyST,BaeH,et al.Cell-laden microengineered gelatin methacrylate hydrogels[J].Biomaterials,2010,31(21):5536-5544.DOI: 10.1016/j.biomaterials.2010.03.064.
    [18] YiS,LiuQ,LuoZ,et al.Micropore-forming gelatin methacryloyl (GelMA) bioink toolbox 2.0: designable tunability and adaptability for 3D bioprinting applications[J].Small,2022,18(25):e2106357.DOI: 10.1002/smll.202106357.
    [19] LeeCH,SinglaA,LeeY.Biomedical applications of collagen[J].Int J Pharm,2001,221(1/2):1-22.DOI: 10.1016/s0378-5173(01)00691-3.
    [20] LvB,LuL,HuL,et al.Recent advances in GelMA hydrogel transplantation for musculoskeletal disorders and related disease treatment[J].Theranostics,2023,13(6):2015-2039.DOI: 10.7150/thno.80615.
    [21] TavaresMT,GasparVM,MonteiroMV,et al.GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation[J].Biofabrication,2021,13(3).DOI: 10.1088/1758-5090/abdc86.
    [22] ChenZ,LvZ,ZhuangY,et al.Mechanical signal-tailored hydrogel microspheres recruit and train stem cells for precise differentiation[J].Adv Mater,2023,35(40):e2300180.DOI: 10.1002/adma.202300180.
    [23] EnglerAJ,SenS,SweeneyHL,et al.Matrix elasticity directs stem cell lineage specification[J].Cell,2006,126(4):677-689.DOI: 10.1016/j.cell.2006.06.044.
    [24] SharifiS,SharifiH,AkbariA,et al.Systematic optimization of visible light-induced crosslinking conditions of gelatin methacryloyl (GelMA)[J].Sci Rep,2021,11(1):23276.DOI: 10.1038/s41598-021-02830-x.
    [25] ZhuY,WangW,ChenQ,et al.Bioprinted PDLSCs with high-concentration GelMA hydrogels exhibit enhanced osteogenic differentiation in vitro and promote bone regeneration in vivo[J].Clin Oral Investig,2023,27(9):5153-5170.DOI: 10.1007/s00784-023-05135-7.
    [26] DupontS,MorsutL,AragonaM,et al.Role of YAP/TAZ in mechanotransduction[J].Nature,2011,474(7350):179-183.DOI: 10.1038/nature10137.
    [27] YinJ,YanM,WangY,et al.3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy[J].ACS Appl Mater Interfaces,2018,10(8):6849-6857.DOI: 10.1021/acsami.7b16059.
    [28] CruzEM,MachadoLS,ZamproniLN,et al.A gelatin methacrylate-based hydrogel as a potential bioink for 3D bioprinting and neuronal differentiation[J].Pharmaceutics,2023,15(2):627.DOI: 10.3390/pharmaceutics15020627.
    [29] ZhangX,CaoD,XuL,et al.Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation[J].Cell Stem Cell,2023,30(4):378-395.e8.DOI: 10.1016/j.stem.2023.03.005.
    [30] LiW,LiangH,AoY,et al.Biophysical cues of bone marrow-inspired scaffolds regulate hematopoiesis of hematopoietic stem and progenitor cells[J].Biomaterials,2023,298:122111.DOI: 10.1016/j.biomaterials.2023.122111.
    [31] CeylanH,YasaIC,YasaO,et al.3D-printed biodegradable microswimmer for theranostic cargo delivery and release[J].ACS Nano,2019,13(3):3353-3362.DOI: 10.1021/acsnano.8b09233.
    [32] ZhouX,ChenJ,SunH,et al.Spatiotemporal regulation of angiogenesis/osteogenesis emulating natural bone healing cascade for vascularized bone formation[J].J Nanobiotechnology,2021,19(1):420.DOI: 10.1186/s12951-021-01173-z.
    [33] FanY,YueZ,LucarelliE,et al.Hybrid printing using cellulose nanocrystals reinforced GelMA/HAMA hydrogels for improved structural integration[J].Adv Healthc Mater,2020,9(24):e2001410.DOI: 10.1002/adhm.202001410.
    [34] ThieleJ,MaY,BruekersSM,et al.25th anniversary article: designer hydrogels for cell cultures: a materials selection guide[J].Adv Mater,2014,26(1):125-147.DOI: 10.1002/adma.201302958.
    [35] WeiH,CuiJ,LinK,et al.Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration[J].Bone Res,2022,10(1):17.DOI: 10.1038/s41413-021-00180-y.
    [36] CidonioG,Alcala-OrozcoCR,LimKS,et al.Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks[J].Biofabrication,2019,11(3):035027.DOI: 10.1088/1758-5090/ab19fd.
    [37] HeZ,HuP,LiZ,et al.Self-assembled hybrid hydrogel microspheres create a bone marrow-mimicking niche for bone regeneration[J].Bioact Mater,2025,54:179-200.DOI: 10.1016/j.bioactmat.2025.08.003.
    [38] HuangL,GuoZ,YangX,et al.Advancements in GelMA bioactive hydrogels: strategies for infection control and bone tissue regeneration[J].Theranostics,2025,15(2):460-493.DOI: 10.7150/thno.103725.
    [39] ZhouB,JiangX,ZhouX,et al.GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances[J].Biomater Res,2023,27(1):86.DOI: 10.1186/s40824-023-00422-6.
  • 图  1  2种浓度GelMA溶液在紫外线照射前后的形态变化。1A.37 ℃下50 g/L的GelMA溶液(左)和150 g/L的GelMA溶液(右)倾斜时均流动;1B.50 g/L的GelMA溶液(左)和150 g/L的GelMA溶液(右)经紫外线照射30 s后形成凝胶状态的GelMA水凝胶倾斜时可保持稳定不流动;1C.50 g/L的GelMA溶液(左)和150 g/L的GelMA溶液(右)经紫外线照射60 s后形成凝胶状态的GelMA水凝胶倾斜时可保持稳定不流动

    注:GelMA为甲基丙烯酸酐化明胶

    图  2  4组GelMA水凝胶冷冻干燥48 h后的微观形貌 扫描电子显微镜×100。2A、2B、2C、2D.分别为低浓度短时组、低浓度长时组、高浓度短时组、高浓度长时组水凝胶,均呈多孔网状结构且孔径大小不一,图2A与图2B中大孔径较多,图2C与图2D中小孔径较多

    注:低浓度短时组、低浓度长时组及高浓度短时组、高浓度长时组甲基丙烯酸酐化明胶(GelMA)水凝胶分别由50 g/L的GelMA溶液光交联30、60 s及150 g/L的GelMA溶液光交联30、60 s制成

    图  3  4组GelMA水凝胶的孔隙率与杨氏模量的相关性(总样本数为12)

    注:低浓度短时组、低浓度长时组及高浓度短时组、高浓度长时组甲基丙烯酸酐化明胶(GelMA)水凝胶分别由50 g/L的GelMA溶液光交联30、60 s及150 g/L的GelMA溶液光交联30、60 s制成;孔隙率与杨氏模量呈显著负相关,R2=0.91,P<0.001

    图  4  4组载小鼠BMSC的GelMA水凝胶中细胞培养7 d后存活情况 钙黄绿素-乙酰甲酯-碘化丙啶×20。4A、4B、4C、4D.分别为低浓度短时载细胞组、低浓度长时载细胞组、高浓度短时载细胞组、高浓度长时载细胞组,均可见大量活细胞、少量死细胞

    注:低浓度短时载细胞组、低浓度长时载细胞组及高浓度短时载细胞组、高浓度长时载细胞组的载细胞甲基丙烯酸酐化明胶(GelMA)水凝胶分别由骨髓间充质干细胞(BMSC)与50 g/L的GelMA溶液混合后光交联30、60 s及BMSC与150 g/L的GelMA溶液混合后光交联30、60 s制成;活细胞阳性染色为绿色,死细胞阳性染色为红色

    图  5  4组载小鼠BMSC的GelMA水凝胶中细胞成骨诱导培养10 d后Runx2和Nanog的蛋白表达情况 Alexa Fluor 488-Alexa Fluor 647-4',6-二脒基-2-苯基吲哚×40。5A、5B、5C、5D.分别为低浓度短时载细胞组、低浓度长时载细胞组、高浓度短时载细胞组、高浓度长时载细胞组Runx2蛋白表达情况,图5D中Runx2蛋白表达明显高于图5A、5B、5C;5E、5F、5G、5H.分别为低浓度短时载细胞组、低浓度长时载细胞组、高浓度短时载细胞组、高浓度长时载细胞组Nanog蛋白表达情况,图5E中Nanog蛋白表达明显高于图5F、5G、5H

    注:低浓度短时载细胞组、低浓度长时载细胞组及高浓度短时载细胞组、高浓度长时载细胞组的载细胞甲基丙烯酸酐化明胶(GelMA)水凝胶分别由骨髓间充质干细胞(BMSC)与50 g/L的GelMA溶液混合后光交联30、60 s及BMSC与150 g/L的GelMA溶液混合后光交联30、60 s制成;细胞核、Runt相关转录因子2(Runx2)、Nanog阳性染色分别为蓝色、绿色、红色

    Table  1.   4组载小鼠BMSC的GelMA水凝胶中细胞成骨诱导培养10 d后成骨与干性相关因子的mRNA表达比较(x¯±s

    组别样本数Runx2ALPSox2Nanog
    低浓度短时载细胞组31.01±0.161.000±0.0861.002±0.0901.000±0.017
    低浓度长时载细胞组31.13±0.101.014±0.0580.758±0.0220.188±0.035
    高浓度短时载细胞组31.52±0.131.098±0.0730.650±0.0470.153±0.040
    高浓度长时载细胞组31.89±0.101.647±0.0190.547±0.0100.083±0.012
    P10.5420.9900.002<0.001
    P20.0020.220<0.001<0.001
    P3<0.001<0.001<0.001<0.001
    P40.0130.3240.1100.408
    P5<0.001<0.0010.0040.005
    P60.015<0.0010.1320.042
    注:低浓度短时载细胞组、低浓度长时载细胞组及高浓度短时载细胞组、高浓度长时载细胞组的载细胞甲基丙烯酸酐化明胶(GelMA)水凝胶分别由骨髓间充质干细胞(BMSC)与50 g/L的GelMA溶液混合后光交联30、60 s及BMSC与150 g/L的GelMA溶液混合后光交联30、60 s制成;Runt相关转录因子2(Runx2)、碱性磷酸酶(ALP)、SRY盒转录因子2(Sox2)、Nanog的浓度因素主效应,F值分别为95.59、127.50、94.90、1 017.00,P值均<0.001;时间因素主效应,F值分别为14.89、75.55、36.09、874.10,P值分别为0.005、<0.001、<0.001、<0.001;两者交互作用,F值分别为3.62、68.32、6.00、618.50,P值分别为0.094、<0.001、0.040、<0.001;P1值、P2值、P3值分别为低浓度长时载细胞组、高浓度短时载细胞组、高浓度长时载细胞组与低浓度短时载细胞组各指标比较所得;P4值、P5值分别为高浓度短时载细胞组、高浓度长时载细胞组与低浓度长时载细胞组各指标比较所得;P6值为高浓度短时载细胞组与高浓度长时载细胞组各指标比较所得
    下载: 导出CSV
  • 孔玥 9月30日.mp4
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  31
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-30

目录

    /

    返回文章
    返回