留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微环境调控的天然多糖水凝胶创面修复策略

徐福建 李杨

徐福建, 李杨. 基于微环境调控的天然多糖水凝胶创面修复策略[J]. 中华烧伤与创面修复杂志, 2025, 41(10): 918-927. DOI: 10.3760/cma.j.cn501225-20250722-00316.
引用本文: 徐福建, 李杨. 基于微环境调控的天然多糖水凝胶创面修复策略[J]. 中华烧伤与创面修复杂志, 2025, 41(10): 918-927. DOI: 10.3760/cma.j.cn501225-20250722-00316.
Xu FJ,Li Y.Wound repair strategies of natural polysaccharide hydrogels based on microenvironmental regulation[J].Chin J Burns Wounds,2025,41(10):918-927.DOI: 10.3760/cma.j.cn501225-20250722-00316.
Citation: Xu FJ,Li Y.Wound repair strategies of natural polysaccharide hydrogels based on microenvironmental regulation[J].Chin J Burns Wounds,2025,41(10):918-927.DOI: 10.3760/cma.j.cn501225-20250722-00316.

基于微环境调控的天然多糖水凝胶创面修复策略

doi: 10.3760/cma.j.cn501225-20250722-00316
基金项目: 

国家自然科学基金面上项目 52273115

国家自然科学基金委员会创新研究群体项目 52221006

详细信息
    通讯作者:

    徐福建,Email:xufj@mail.buct.edu.cn

Wound repair strategies of natural polysaccharide hydrogels based on microenvironmental regulation

Funds: 

General Program of National Natural Science Foundation of China 52273115

Innovatie Research Group Project of National Natural Science Foundation of China 52221006

More Information
  • 摘要: 创面修复效率和最终组织功能高度依赖于微环境的精细调控。在生理维度,创面局部会发生一系列复杂的信号级联,如炎症反应持续放大、细胞因子网络重塑、氧化还原平衡失调以及微生物群落演替等,这些信号的时空动态直接决定了创面修复进程和质量。在物理维度,渗液调控障碍、微生物屏障破坏、创缘应力集中以及局部温度失衡,则进一步加剧组织损伤并阻碍创面愈合。传统创面治疗难以应对个体化创伤特征和动态的病理变化,因而亟须新一代智能化敷料,能够实时感知病理信号并动态调节创面微环境。天然多糖因结构多样性和可修饰性,为构建多功能水凝胶提供了丰富的设计空间;与外源刺激响应平台的整合更拓展了创面敷料的功能潜力。该文系统梳理了天然多糖水凝胶在精准调控创面微环境方面的最新进展,重点分析了生理微环境的智能响应机制以及物理微环境的功能化设计策略,拟为天然多糖水凝胶的理性设计和临床应用提供理论指导。

     

  • 参考文献(72)

    [1] PeñaOA,MartinP.Cellular and molecular mechanisms of skin wound healing[J].Nat Rev Mol Cell Biol,2024,25(8):599-616.DOI: 10.1038/s41580-024-00715-1.
    [2] MedzhitovR.The spectrum of inflammatory responses[J].Science,2021,374(6571):1070-1075.DOI: 10.1126/science.abi5200.
    [3] SunBK,SiprashviliZ,KhavariPA.Advances in skin grafting and treatment of cutaneous wounds[J].Science,2014,346(6212):941-945.DOI: 10.1126/science.1253836.
    [4] ChengY,WangY,WangY,et al.Microenvironment-feedback regulated hydrogels as living wound healing materials[J].Nat Commun,2025,16(1):6050.DOI: 10.1038/s41467-025-60858-3.
    [5] WangJ, HeJ, ZhouR,et al.Accelerated diabetic wound healing via electrical and oxidative microenvironment regulation by MXene nanosheet-based hydrogel dressings[J]. ACS Appl Nano Mater, 2025, 11(8): 5466-5480. DOI: 10.1021/acsanm.4c07182.
    [6] LiG,LaiZ,ShanA.Advances of antimicrobial peptide-based biomaterials for the treatment of bacterial infections[J].Adv Sci (Weinh),2023,10(11):e2206602.DOI: 10.1002/advs.202206602.
    [7] 石明生, 梁晓炀, 张瑞, 等. 透明质酸生物胶的性能及其对小鼠烧伤感染性创面愈合的影响[J]. 中华烧伤与创面修复杂志, 2025, 41(10): 949-957. DOI: 10.3760/cma.j.cn501225-20250422-00186.
    [8] TheocharidisG,YukH,RohH,et al.A strain-programmed patch for the healing of diabetic wounds[J].Nat Biomed Eng,2022,6(10):1118-1133.DOI: 10.1038/s41551-022-00905-2.
    [9] MaX,ZhouY,XinM,et al.A Mg battery-integrated bioelectronic patch provides efficient electrochemical stimulations for wound healing[J].Adv Mater,2024,36(48):e2410205.DOI: 10.1002/adma.202410205.
    [10] ChenQ,LiS,LiK,et al.A skin stress shielding platform based on body temperature-induced shrinking of hydrogel for promoting scar-less wound healing[J].Adv Sci (Weinh),2024,11(41):e2306018.DOI: 10.1002/advs.202306018.
    [11] BoatengJS,MatthewsKH,StevensHN,et al.Wound healing dressings and drug delivery systems: a review[J].J Pharm Sci,2008,97(8):2892-2923.DOI: 10.1002/jps.21210.
    [12] KusKJB, RuizES.Wound dressings – a practical review[J].Current Dermatology Reports, 2020, 9(4):298-308.DOI: 10.1007/s13671-020-00319-w.
    [13] TooleBP.Hyaluronan: from extracellular glue to pericellular cue[J].Nat Rev Cancer,2004,4(7):528-539.DOI: 10.1038/nrc1391.
    [14] DashM, ChielliniF, OttenbriteRM, et al. Chitosan—a versatile semi-synthetic polymer in biomedical applications[J].Prog Polym Sci, 2011, 36(8):981-1014. DOI: 10.1016/j.progpolymsci.2011.02.001.
    [15] XingM,CaoQ,WangY,et al.Advances in research on the bioactivity of alginate oligosaccharides[J].Mar Drugs,2020,18(3):144.DOI: 10.3390/md18030144.
    [16] YangQ,PengJ,XiaoH,et al.Polysaccharide hydrogels: functionalization, construction and served as scaffold for tissue engineering[J].Carbohydr Polym,2022,278:118952.DOI: 10.1016/j.carbpol.2021.118952.
    [17] HivechiA,JoghataeiMT,BahramiSH,et al.Oxidized carboxymethyl cellulose/gelatin in situ gelling hydrogel for accelerated diabetic wound healing: synthesis, characterization, and in vivo investigations[J].Int J Biol Macromol,2023,242(Pt 3):125127.DOI: 10.1016/j.ijbiomac.2023.125127.
    [18] Zia-Ud-Din,XiongH,FeiP.Physical and chemical modification of starches: a review[J].Crit Rev Food Sci Nutr,2017,57(12):2691-2705.DOI: 10.1080/10408398.2015.1087379.
    [19] GuoX,WangY,QinY,et al.Structures, properties and application of alginic acid: a review[J].Int J Biol Macromol,2020,162:618-628.DOI: 10.1016/j.ijbiomac.2020.06.180.
    [20] IaconisiGN,LunettiP,GalloN,et al.Hyaluronic acid: a powerful biomolecule with wide-ranging applications-a comprehensive review[J].Int J Mol Sci,2023,24(12):10296.DOI: 10.3390/ijms241210296.
    [21] YangX,WangQ,ZhangA,et al.Strategies for sustained release of heparin: a review[J].Carbohydr Polym,2022,294:119793.DOI: 10.1016/j.carbpol.2022.119793.
    [22] PeersS,MontembaultA,LadavièreC.Chitosan hydrogels for sustained drug delivery[J].J Control Release,2020,326:150-163.DOI: 10.1016/j.jconrel.2020.06.012.
    [23] UnnithanAR,BarakatNA,PichiahPB,et al.Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl[J].Carbohydr Polym,2012,90(4):1786-1793.DOI: 10.1016/j.carbpol.2012.07.071.
    [24] LiYL,ZhuL,LiuZ,et al.Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells[J].Angew Chem Int Ed Engl,2009,48(52):9914-9918.DOI: 10.1002/anie.200904260.
    [25] AnsariM,DarvishiA.A review of the current state of natural biomaterials in wound healing applications[J].Front Bioeng Biotechnol,2024,12:1309541.DOI: 10.3389/fbioe.2024.1309541.
    [26] ZhangF,ZhangH,WangS,et al.A dynamically phase-adaptive regulating hydrogel promotes ultrafast anti-fibrotic wound healing[J].Nat Commun,2025,16(1):3738.DOI: 10.1038/s41467-025-58987-w.
    [27] GuoB,DongR,LiangY,et al.Haemostatic materials for wound healing applications[J].Nat Rev Chem,2021,5(11):773-791.DOI: 10.1038/s41570-021-00323-z.
    [28] EkeG,MangirN,HasirciN,et al.Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering[J].Biomaterials,2017,129:188-198.DOI: 10.1016/j.biomaterials.2017.03.021.
    [29] MaY,MorozovaSM,KumachevaE.From nature-sourced polysaccharide particles to advanced functional materials[J].Adv Mater,2024,36(23):e2312707.DOI: 10.1002/adma.202312707.
    [30] HuW,WangZ,XiaoY,et al.Advances in crosslinking strategies of biomedical hydrogels[J].Biomater Sci,2019,7(3):843-855.DOI: 10.1039/c8bm01246f.
    [31] SunA, HeX, JiX, et al. Current research progress of photopolymerized hydrogels in tissue engineering [J]. Chin Chem Lett, 2021, 32(7): 2117-2126. DOI: 10.1016/j.cclet.2021.01.048.
    [32] PatenaudeM,SmeetsNM,HoareT.Designing injectable, covalently cross-linked hydrogels for biomedical applications[J].Macromol Rapid Commun,2014,35(6):598-617.DOI: 10.1002/marc.201300818.
    [33] NonoyamaT,GongJP.Tough double network hydrogel and its biomedical applications[J].Annu Rev Chem Biomol Eng,2021,12:393-410.DOI: 10.1146/annurev-chembioeng-101220-080338.
    [34] ZhangW, ChenS, JiangW, et al.Double-network hydrogels for biomaterials: structure-property relationships and drug delivery[J].European Polymer Journal, 2023, 185:111807.DOI: 10.1016/j.eurpolymj.2022.111807.
    [35] 孔玥, 田丰, 刘清华, 等. 甲基丙烯酸酐化明胶水凝胶的孔隙率与杨氏模量对小鼠骨髓间充质干细胞生物学行为的影响[J]. 中华烧伤与创面修复杂志, 2025, 41(10): 958-967. DOI: 10.3760/cma.j.cn501225-20250630-00286.
    [36] ZhuH, WangC, YangY, et al.High-strength mechanically gradient hydrogels via physical crosslinking for tendon-mimetic tissue repair[J].NPJ Flexible Electronics, 2025, 9(1):53. DOI: 10.1038/s41528-025-00430-7.
    [37] LinCH,SrioudomJR,SunW,et al.The use of hydrogel microspheres as cell and drug delivery carriers for bone, cartilage, and soft tissue regeneration[J].Biomater Transl,2024,5(3):236-256.DOI: 10.12336/biomatertransl.2024.03.003.
    [38] ChiH,QiuY,YeX,et al.Preparation strategy of hydrogel microsphere and its application in skin repair[J].Front Bioeng Biotechnol,2023,11:1239183.DOI: 10.3389/fbioe.2023.1239183.
    [39] WangY.Programmable hydrogels[J].Biomaterials,2018,178:663-680.DOI: 10.1016/j.biomaterials.2018.03.008.
    [40] ZhangY,WangZL,DengZP,et al.An extracellular matrix-inspired self-healing composite hydrogel for enhanced platelet-rich plasma-mediated chronic diabetic wound treatment[J].Carbohydr Polym,2023,315:120973.DOI: 10.1016/j.carbpol.2023.120973.
    [41] GongY,WangP,CaoR,et al.Exudate absorbing and antimicrobial hydrogel integrated with multifunctional curcumin-loaded magnesium polyphenol network for facilitating burn wound healing[J].ACS Nano,2023,17(22):22355-22370.DOI: 10.1021/acsnano.3c04556.
    [42] OmidianH,WilsonRL,Dey ChowdhuryS.Injectable biomimetic gels for biomedical applications[J].Biomimetics (Basel),2024,9(7):418.DOI: 10.3390/biomimetics9070418.
    [43] FanF,SahaS,Hanjaya-PutraD.Biomimetic hydrogels to promote wound healing[J].Front Bioeng Biotechnol,2021,9:718377.DOI: 10.3389/fbioe.2021.718377.
    [44] ZhangR,LiangX,WangJ,et al.Supramolecular hydrogel based on pseudopolyrotaxane aggregation for bacterial microenvironment-responsive antibiotic delivery[J].Chem Asian J,2022,17(17):e202200574.DOI: 10.1002/asia.202200574.
    [45] LohmannN,SchirmerL,AtallahP,et al.Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice[J].Sci Transl Med,2017,9(386):eaai9044. DOI: 10.1126/scitranslmed.aai9044.
    [46] ZhangX,FengJ,FengW,et al.Glycosaminoglycan-based hydrogel delivery system regulates the wound microenvironment to rescue chronic wound healing[J].ACS Appl Mater Interfaces,2022,14(28):31737-31750.DOI: 10.1021/acsami.2c08593.
    [47] Cano SanchezM,LancelS,BoulangerE,et al.Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review[J].Antioxidants (Basel),2018,7(8):98.DOI: 10.3390/antiox7080098.
    [48] 李玉骞, 张婷婷, 邹桂连, 等. 线粒体移植对糖尿病大鼠全层皮肤缺损的影响[J]. 中华烧伤与创面修复杂志, 2025, 41(10): 937-948. DOI: 10.3760/cma.j.cn501225-20250721-00315.
    [49] ZhaoW,ZhangX,ZhangR,et al.Self-assembled herbal medicine encapsulated by an oxidation-sensitive supramolecular hydrogel for chronic wound treatment[J].ACS Appl Mater Interfaces,2020,12(51):56898-56907.DOI: 10.1021/acsami.0c19492.
    [50] LiangX,ChenH,ZhangR,et al.Herbal micelles-loaded ROS-responsive hydrogel with immunomodulation and microenvironment reconstruction for diabetic wound healing[J].Biomaterials,2025,317:123076.DOI: 10.1016/j.biomaterials.2024.123076.
    [51] ZhaoW,LiY,ZhangX,et al.Photo-responsive supramolecular hyaluronic acid hydrogels for accelerated wound healing[J].J Control Release,2020,323:24-35.DOI: 10.1016/j.jconrel.2020.04.014.
    [52] ZhangX, YaoD, ZhaoW, et al. Engineering platelet-rich plasma based dual-network hydrogel as a bioactive wound dressing with potential clinical translational value [J]. Adv Funct Mater, 2021, 31(8): 2009258. DOI: 10.1002/adfm.202009258.
    [53] ChenK,LiuY,LiuX,et al.Hyaluronic acid-modified and verteporfin-loaded polylactic acid nanogels promote scarless wound healing by accelerating wound re-epithelialization and controlling scar formation[J].J Nanobiotechnology,2023,21(1):241.DOI: 10.1186/s12951-023-02014-x.
    [54] XiongY,LinZ,BuP,et al.A whole-course-repair system based on neurogenesis-angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing[J].Adv Mater,2023,35(19):e2212300.DOI: 10.1002/adma.202212300.
    [55] WangG,SwerenE,LiuH,et al.Bacteria induce skin regeneration via IL-1β signaling[J].Cell Host Microbe,2021,29(5):777-791.e6.DOI: 10.1016/j.chom.2021.03.003.
    [56] SunX,XiangJ,ChenR,et al.Sweat gland organoids originating from reprogrammed epidermal keratinocytes functionally recapitulated damaged skin[J].Adv Sci (Weinh),2021,8(22):e2103079.DOI: 10.1002/advs.202103079.
    [57] UberoiA,McCready-VangiA,GriceEA.The wound microbiota: microbial mechanisms of impaired wound healing and infection[J].Nat Rev Microbiol,2024,22(8):507-521.DOI: 10.1038/s41579-024-01035-z.
    [58] TottoliEM,DoratiR,GentaI,et al.Skin wound healing process and new emerging technologies for skin wound care and regeneration[J].Pharmaceutics,2020,12(8):735.DOI: 10.3390/pharmaceutics12080735.
    [59] EvansND,OreffoRO,HealyE,et al.Epithelial mechanobiology, skin wound healing, and the stem cell niche[J].J Mech Behav Biomed Mater,2013,28:397-409.DOI: 10.1016/j.jmbbm.2013.04.023.
    [60] ChenH,ZhaoZ,ZhangR,et al.Adaptable hydrogel with strong adhesion of wet tissue for long-term protection of periodontitis wound[J].Adv Mater,2025,37(1):e2413373.DOI: 10.1002/adma.202413373.
    [61] ChenH,ZhangR,ZhangG,et al.Naturally inspired tree-ring structured dressing provides sustained wound tightening and accelerates closure[J].Adv Mater,2025,37(3):e2410845.DOI: 10.1002/adma.202410845.
    [62] MalekiA,HeJ,BochaniS,et al.Multifunctional photoactive hydrogels for wound healing acceleration[J].ACS Nano,2021,15(12):18895-18930. DOI: 10.1021/acsnano.1c08334.
    [63] GaoY, DuH, XieZ, et al.Self-adhesive photothermal hydrogel films for solar-light assisted wound healing[J]. J Mater Chem B, 2019, 23(7): 3644-3651. DOI: 10.1039/C9TB00481E.
    [64] ZhangR, FengJ, ChenH, et al. Hybrid hydrogel with photothermal stimulation elicits immunomodulation‐mediated wound healing[J]. Adv Funct Mater, 2025, 35: 2419170. DOI: 10.1002/adfm.202419170.
    [65] PowerG,MooreZ,O'ConnorT.Measurement of pH, exudate composition and temperature in wound healing: a systematic review[J].J Wound Care,2017,26(7):381-397.DOI: 10.12968/jowc.2017.26.7.381.
    [66] SimP,StrudwickXL,SongY,et al.Influence of acidic pH on wound healing in vivo: a novel perspective for wound treatment[J].Int J Mol Sci,2022,23(21):13655.DOI: 10.3390/ijms232113655.
    [67] ChenS,LuoY,HeY,et al.In-situ-sprayed therapeutic hydrogel for oxygen-actuated Janus regulation of postsurgical tumor recurrence/metastasis and wound healing[J].Nat Commun,2024,15(1):814.DOI: 10.1038/s41467-024-45072-x.
    [68] LuoR,DaiJ,ZhangJ,et al.Accelerated skin wound healing by electrical stimulation[J].Adv Healthc Mater,2021,10(16):e2100557.DOI: 10.1002/adhm.202100557.
    [69] AudittoS, ContardiM, GnocchiC, et al. Harnessing natural compounds and external stimuli for advanced wound healing: a review of combination therapy strategies[J]. J Drug Deliv Sci Technol, 2024, 101: 106172. DOI: 10.1016/j.jddst.2024.106172.
    [70] WuSJ,ZhaoX.Bioadhesive technology platforms[J].Chem Rev,2023,123(24):14084-14118.DOI: 10.1021/acs.chemrev.3c00380.
    [71] SrivastavaGK,Martinez-RodriguezS,MdFadilah NI,et al.Progress in wound-healing products based on natural compounds, stem cells, and microRNA-based biopolymers in the European, USA, and Asian markets: opportunities, barriers, and regulatory issues[J].Polymers (Basel),2024,16(9):1280.DOI: 10.3390/polym16091280.
    [72] de AmorimJDP,da Silva JuniorCJG,de MedeirosADM,et al.Bacterial cellulose as a versatile biomaterial for wound dressing application[J].Molecules,2022,27(17):5580.DOI: 10.3390/molecules27175580.
  • 图  1  天然多糖水凝胶的交联机制

  • 加载中
图(2)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  30
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-22

目录

    /

    返回文章
    返回