留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机械-化学-生物学理论的外科切口瘢痕机制与减张技术创新

吕开阳 李雅舒

吕开阳, 李雅舒. 基于机械-化学-生物学理论的外科切口瘢痕机制与减张技术创新[J]. 中华烧伤与创面修复杂志, 2026, 42(2): 1-10. DOI: 10.3760/cma.j.cn501225-20251013-00424.
引用本文: 吕开阳, 李雅舒. 基于机械-化学-生物学理论的外科切口瘢痕机制与减张技术创新[J]. 中华烧伤与创面修复杂志, 2026, 42(2): 1-10. DOI: 10.3760/cma.j.cn501225-20251013-00424.
Lyu Kaiyang,Li Yashu.Technological innovations in the mechanism and reduction of surgical incision scars based on the mechano-chemo-biological theory[J].Chin J Burns Wounds,2026,42(2):1-10.DOI: 10.3760/cma.j.cn501225-20251013-00424.
Citation: Lyu Kaiyang,Li Yashu.Technological innovations in the mechanism and reduction of surgical incision scars based on the mechano-chemo-biological theory[J].Chin J Burns Wounds,2026,42(2):1-10.DOI: 10.3760/cma.j.cn501225-20251013-00424.

基于机械-化学-生物学理论的外科切口瘢痕机制与减张技术创新

doi: 10.3760/cma.j.cn501225-20251013-00424
基金项目: 

国家自然科学基金面上项目 81772091

上海东方英才计划优秀技术带头人项目 BJKJ2024024

详细信息
    通讯作者:

    吕开阳,Email:lvkaiyang@hotmail.com

Technological innovations in the mechanism and reduction of surgical incision scars based on the mechano-chemo-biological theory

Funds: 

General Program of National Natural Science Foundation of China 81772091

Shanghai Oriental Talents Program-Outstanding Technical Leaders Project BJKJ2024024

  • 摘要: 手术切口愈合后易形成线性瘢痕,且可能发展为增生性瘢痕或瘢痕疙瘩。研究表明,机械力与基质刚度等生物力学因素通过影响细胞行为和基质重塑来调控瘢痕形成。笔者团队提出机械-化学-生物学三者的动态耦合与协同作用共同调控瘢痕发展的观点,并强调术后持续控制张力对防止瘢痕变宽及增生至关重要。目前常用减张方法存在局限:术中缝合效果短暂;外用减张装置(如减张胶带、拉链)易脱落、刺激皮肤,且患者依从性低;点阵激光在高张力部位单独使用时仍可能导致瘢痕变宽。为此,笔者团队提出基于慢吸收线原位回针的皮内缝合方案,旨在实现长期有效的张力管理。初步临床应用结果显示,该方案可实现外科切口的持续减张,与点阵激光联用有望协同改善瘢痕宽度,并克服传统方法的不足。未来将通过进一步研究优化该方案,推动其标准化与普及,逐步建立以持续减张为核心的瘢痕防治体系,最终促进手术切口的理想愈合。

     

  • 参考文献(74)

    [1] LiY, LiuA, WangJ, et al. Suture-anchored cutaneous tension induces persistent hypertrophic scarring in a novel murine model[J]. Burns Trauma, 2024,12:tkae051. DOI: 10.1093/burnst/tkae051.
    [2] HosseiniM, BrownJ, KhosrotehraniK, et al. Skin biomechanics: a potential therapeutic intervention target to reduce scarring[J]. Burns Trauma, 2022,10:tkac036. DOI: 10.1093/burnst/tkac036.
    [3] CustisT, ArmstrongAW, KingTH, et al. Effect of Adhesive Strips and Dermal Sutures vs Dermal Sutures Only on Wound Closure: A Randomized Clinical Trial[J]. JAMA Dermatol, 2015,151(8):862-867. DOI: 10.1001/jamadermatol.2015.0174.
    [4] ChenZ, JinY, ZouY, et al. Scar Prevention With Prolonged Use of Tissue Adhesive Zipper Immediately After Facial Surgery: A Randomized Controlled Trial[J]. Aesthet Surg J, 2022,42(5):NP265-NP272. DOI: 10.1093/asj/sjab407.
    [5] JiQ, LuoL, NiJ, et al. Fractional CO2 Laser to Treat Surgical Scars: A System Review and Meta-Analysis on Optimal Timing[J]. J Cosmet Dermatol, 2025,24(1):e16708. DOI: 10.1111/jocd.16708.
    [6] RothmanSS. Physiology and biochemistry of the skin[M]. London:Cambridge University Press,1954.
    [7] KangM, KoUH, OhEJ, et al. Tension-sensitive HOX gene expression in fibroblasts for differential scar formation[J]. J Transl Med, 2025,23(1):168. DOI: 10.1186/s12967-025-06191-1.
    [8] LangranaNA, AlexanderH, StrauchlerI, et al. Effect of mechanical load in wound healing[J]. Ann Plast Surg, 1983,10(3):200-208. DOI: 10.1097/00000637-198303000-00005.
    [9] RognoniE, PiscoAO, HiratsukaT, et al. Fibroblast state switching orchestrates dermal maturation and wound healing[J]. Mol Syst Biol, 2018,14(8):e8174. DOI: 10.15252/msb.20178174.
    [10] AarabiS, BhattKA, ShiY, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis[J]. FASEB J, 2007,21(12):3250-3261. DOI: 10.1096/fj.07-8218com.
    [11] RossR, GuoY, WalkerRN, et al. Biomechanical Activation of Keloid Fibroblasts Promotes Lysosomal Remodeling and Exocytosis[J]. J Invest Dermatol, 2024,144(12):2730-2741. DOI: 10.1016/j.jid.2024.04.015.
    [12] CaoG, YeM, WangH, et al. The Role of Biomechanical Forces in the Formation and Treatment of Pathological Scars[J]. Clin Cosmet Investig Dermatol, 2024,17:2565-2571. DOI: 10.2147/CCID.S496253.
    [13] MascharakS, GuoJL, GriffinM, et al. Modelling and targeting mechanical forces in organ fibrosis[J]. Nat Rev Bioeng, 2024,2(4):305-323. DOI: 10.1038/s44222-023-00144-3.
    [14] MartinoF, PerestreloAR, VinarskýV, et al. Cellular Mechanotransduction: From Tension to Function[J]. Front Physiol, 2018,9:824. DOI: 10.3389/fphys.2018.00824.
    [15] AlenghatFJ, IngberDE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins[J]. Sci STKE, 2002,2002(119):pe6. DOI: 10.1126/stke.2002.119.pe6.
    [16] WangR, ChenB, WeiH, et al. Collecting and deactivating TGF-β1 hydrogel for anti-scarring therapy in post-glaucoma filtration surgery[J]. Mater Today Bio, 2022,14:100260. DOI: 10.1016/j.mtbio.2022.100260.
    [17] ZhangQ, ShiL, HeH, et al. Down-Regulating Scar Formation by Microneedles Directly via a Mechanical Communication Pathway[J]. ACS Nano, 2022,16(7):10163-10178. DOI: 10.1021/acsnano.1c11016.
    [18] WongVW, RustadKC, AkaishiS, et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling[J]. Nat Med, 2011,18(1):148-152. DOI: 10.1038/nm.2574.
    [19] VelasquezLS, SutherlandLB, LiuZ, et al. Activation of MRTF-A-dependent gene expression with a small molecule promotes myofibroblast differentiation and wound healing[J]. Proc Natl Acad Sci U S A, 2013,110(42):16850-16855. DOI: 10.1073/pnas.1316764110.
    [20] RagazziniS, ScocozzaF, BernavaG, et al. Mechanosensor YAP cooperates with TGF-β1 signaling to promote myofibroblast activation and matrix stiffening in a 3D model of human cardiac fibrosis[J]. Acta Biomater, 2022,152:300-312. DOI: 10.1016/j.actbio.2022.08.063.
    [21] MascharakS, desJardins-ParkHE, DavittMF, et al. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring[J]. Science, 2021,372(6540)DOI: 10.1126/science.aba2374.
    [22] WipffP, RifkinDB, MeisterJ, et al. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix[J]. J Cell Biol, 2007,179(6):1311-1323. DOI: 10.1083/jcb.200704042.
    [23] WuM, PedrozaM, LafyatisR, et al. Identification of cadherin 11 as a mediator of dermal fibrosis and possible role in systemic sclerosis[J]. Arthritis Rheumatol, 2014,66(4):1010-1021. DOI: 10.1002/art.38275.
    [24] PittetP, LeeK, KulikAJ, et al. Fibrogenic fibroblasts increase intercellular adhesion strength by reinforcing individual OB-cadherin bonds[J]. J Cell Sci, 2008,121(Pt 6):877-886. DOI: 10.1242/jcs.024877.
    [25] BeyerC, SchrammA, AkhmetshinaA, et al. β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis[J]. Ann Rheum Dis, 2012,71(5):761-767. DOI: 10.1136/annrheumdis-2011-200568.
    [26] WongVW, PaternoJ, SorkinM, et al. Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation[J]. FASEB J, 2011,25(12):4498-4510. DOI: 10.1096/fj.10-178087.
    [27] ZhouDW, LeeTT, WengS, et al. Effects of substrate stiffness and actomyosin contractility on coupling between force transmission and vinculin-paxillin recruitment at single focal adhesions[J]. Mol Biol Cell, 2017,28(14):1901-1911. DOI: 10.1091/mbc.E17-02-0116.
    [28] GrannasK, ArngårdenL, LönnP, et al. Crosstalk between Hippo and TGFβ: Subcellular Localization of YAP/TAZ/Smad Complexes[J]. J Mol Biol, 2015,427(21):3407-3415. DOI: 10.1016/j.jmb.2015.04.015.
    [29] TuS, LiY, LiJ, et al. Mechanical stretch-mediated fibroblast activation: The pivotal role of Piezo1 channels[J]. Biochim Biophys Acta Mol Cell Res, 2025,1872(7):120008. DOI: 10.1016/j.bbamcr.2025.120008.
    [30] Elosegui-ArtolaA, AndreuI, BeedleAEM, et al. Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores[J]. Cell, 2017,171(6):1397-1410.e14. DOI: 10.1016/j.cell.2017.10.008.
    [31] HoffmanLM, SmithMA, JensenCC, et al. Mechanical stress triggers nuclear remodeling and the formation of transmembrane actin nuclear lines with associated nuclear pore complexes[J]. Mol Biol Cell, 2020,31(16):1774-1787. DOI: 10.1091/mbc.E19-01-0027.
    [32] LangevinHM, BouffardNA, BadgerGJ, et al. Dynamic fibroblast cytoskeletal response to subcutaneous tissue stretch ex vivo and in vivo[J]. Am J Physiol Cell Physiol, 2005,288(3):C747-756. DOI: 10.1152/ajpcell.00420.2004.
    [33] StewardRL, ChengC, WangDL, et al. Probing cell structure responses through a shear and stretching mechanical stimulation technique[J]. Cell Biochem Biophys, 2010,56(2-3):115-124. DOI: 10.1007/s12013-009-9075-2.
    [34] DahlKN, RibeiroAJS, LammerdingJ. Nuclear shape, mechanics, and mechanotransduction[J]. Circ Res, 2008,102(11):1307-1318. DOI: 10.1161/CIRCRESAHA.108.173989.
    [35] NagayamaK, FukueiT. Cyclic stretch-induced mechanical stress to the cell nucleus inhibits ultraviolet radiation-induced DNA damage[J]. Biomech Model Mechanobiol, 2020,19(2):493-504. DOI: 10.1007/s10237-019-01224-3.
    [36] SosaBA, RothballerA, KutayU, et al. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins[J]. Cell, 2012,149(5):1035-1047. DOI: 10.1016/j.cell.2012.03.046.
    [37] GruenbaumY, MedaliaO. Lamins: the structure and protein complexes[J]. Curr Opin Cell Biol, 2015,32:7-12. DOI: 10.1016/j.ceb.2014.09.009.
    [38] HoCY, JaaloukDE, VartiainenMK, et al. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics[J]. Nature, 2013,497(7450):507-511. DOI: 10.1038/nature12105.
    [39] FisherGJ, KangS, VaraniJ, et al. Mechano-chemo-biological theory of cells and tissues: review and perspectives[J]. Arch Dermatol, 2002,138(11): 1462-1470.DOI: 10.1001/archderm.138.11.1462, PMID:12437452
    [40] GeM, ZhengW, YaoP, et al. Progress in tension-relieving suturing surgery: revolutionary surgical techniques and patient prognosis evaluation methods[J]. Front Surg, 2025,12:1587582. DOI: 10.3389/fsurg.2025.1587582.
    [41] ZitelliJA, MoyRL. Buried vertical mattress suture[J]. J Dermatol Surg Oncol, 1989,15(1):17-19. DOI: 10.1111/j.1524-4725.1989.tb03107.x.
    [42] SadickNS, D'AmelioDL, WeinsteinC. The modified buried vertical mattress suture. A new technique of buried absorbable wound closure associated with excellent cosmesis for wounds under tension[J]. J Dermatol Surg Oncol, 1994,20(11):735-739. DOI: 10.1111/j.1524-4725.1994.tb03195.x.
    [43] ZhangX, DiaoJ, GuoS, et al. Wedge-shaped excision and modified vertical mattress suture fully buried in a multilayered and tensioned wound closure[J]. Aesthetic Plast Surg, 2009,33(3):457-460. DOI: 10.1007/s00266-009-9311-6.
    [44] KantorJ. The set-back buried dermal suture: an alternative to the buried vertical mattress for layered wound closure[J]. J Am Acad Dermatol, 2010,62(2):351-353. DOI: 10.1016/j.jaad.2009.05.049.
    [45] ZuberTJ. The mattress sutures: vertical, horizontal, and corner stitch[J]. Am Fam Physician, 2002,66(12):2231-2236.
    [46] SeeA, SmithHR. Partially buried horizontal mattress suture: modification of the Haneke-Marini suture[J]. Dermatol Surg, 2004,30(12Pt 1):1491-1492. DOI: 10.1111/j.1524-4725.2004.30508.x.
    [47] AlamM, GoldbergLH. Utility of fully buried horizontal mattress sutures[J]. J Am Acad Dermatol, 2004,50(1):73-76. DOI: 10.1016/s0190-9622(03)02097-8.
    [48] MengF, AndreaS, ChengS, et al. Modified Subcutaneous Buried Horizontal Mattress Suture Compared With Vertical Buried Mattress Suture[J]. Ann Plast Surg, 2017,79(2):197-202. DOI: 10.1097/SAP.0000000000001043.
    [49] MinP, ZhangS, SinakiDG, et al. Using Zhang's supertension-relieving suture technique with slowly-absorbable barbed sutures in the management of pathological scars: a multicenter retrospective study[J]. Burns Trauma, 2023,11:tkad026. DOI: 10.1093/burnst/tkad026.
    [50] ChenJ, MoY, ChenY, et al. Application and effect of tension-reducing suture in surgical treatment of hypertrophic scar[J]. BMC Surg, 2024,24(1):119. DOI: 10.1186/s12893-024-02390-7.
    [51] LiuH, HuM, RaoM, et al. [Effectiveness of stepwise progressive ultra-tension-reducing suture method in treatment of high-tension wounds on chest, back, and limbs][J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2024,38(12):1505-1509. DOI: 10.7507/1002-1892.202409048.
    [52] ChenW, JiangT, ZhongZ, et al. The effect of double W tension-reduced suture technique on the abdominal scars following the da Vinci robot-assisted gastrectomy for severely obese patients[J]. BMC Surg, 2023,23(1):115. DOI: 10.1186/s12893-023-01979-8.
    [53] WuF, TianY, WangF, et al. The suture effect of butterfly suture combined with the looped, broad, and deep buried suture in patients with pigmented naevus receiving surgery excision[J]. Arch Dermatol Res, 2025,317(1):433. DOI: 10.1007/s00403-025-03957-x.
    [54] ZhangY, LeiZ, LinB, et al. Split-level folding, step-type tension-relieving suture technique, and the evaluation on scar minimization[J]. J Cosmet Dermatol, 2024,23(6):2199-2208. DOI: 10.1111/jocd.16236.
    [55] HuangC, LiuO. Using a Zipper Device to Minimize Scarring After Excision of Facial Nevi in Pediatric Patients[J]. J Craniofac Surg, 2024,DOI: 10.1097/SCS.0000000000010531.
    [56] GaoY, WangY, LiW, et al. Clinical efficacy analysis of cosmetic suture technique combined with tension reducer in the treatment of facial skin trauma[J]. Medicine (Baltimore), 2024,103(52):e41040. DOI: 10.1097/MD.0000000000041040.
    [57] RenòF, SabbatiniM, LombardiF, et al. In vitro mechanical compression induces apoptosis and regulates cytokines release in hypertrophic scars[J]. Wound Repair Regen, 2003,11(5):331-336. DOI: 10.1046/j.1524-475x.2003.11504.x.
    [58] 章一新, 柴筠. 瘢痕压力治疗的机制与临床应用[J]. 2025,41(4):316-324. DOI: 10.3760/cma.j.cn501225-20250215-00064.
    [59] 中华医学会烧伤外科学分会. 儿童瘢痕预防与治疗临床实践指南(2025版)[J]. 中华烧伤与创面修复杂志,2025,41(11):1011-1028.DOI: 10.3760/cma.j.cn501225-20250630-00285.
    [60] De DeckerI, BeeckmanA, HoeksemaH, et al. Pressure therapy for scars: Myth or reality? A systematic review[J]. Burns, 2023,49(4):741-756. DOI: 10.1016/j.burns.2023.03.007.
    [61] GieleHP, LiddiardK, CurrieK, et al. Direct measurement of cutaneous pressures generated by pressure garments[J]. Burns, 1997,23(2):137-141. DOI: 10.1016/s0305-4179(96)00088-5.
    [62] MannR, YeongEK, MooreM, et al. Do custom-fitted pressure garments provide adequate pressure?[J]. J Burn Care Rehabil, 1997,18(3):247-249. DOI: 10.1097/00004630-199705000-00013.
    [63] LaiCHY, Li-TsangCWP. Validation of the Pliance X System in measuring interface pressure generated by pressure garment[J]. Burns, 2009,35(6):845-851. DOI: 10.1016/j.burns.2008.09.013.
    [64] YagmurC, AkaishiS, OgawaR, et al. Mechanical receptor-related mechanisms in scar management: a review and hypothesis[J]. Plast Reconstr Surg, 2010,126(2):426-434. DOI: 10.1097/PRS.0b013e3181df715d.
    [65] LoCM, WangHB, DemboM, et al. Cell movement is guided by the rigidity of the substrate[J]. Biophys J, 2000,79(1):144-152. DOI: 10.1016/S0006-3495(00)76279-5.
    [66] HultmanCS, FriedstatJS, EdkinsRE, et al. Laser resurfacing and remodeling of hypertrophic burn scars: the results of a large, prospective, before-after cohort study, with long-term follow-up[J]. Ann Surg, 2014,260(3):519-529; discussion 529-532. DOI: 10.1097/SLA.0000000000000893.
    [67] MaY, BarnesSP, ChenY, et al. Influence of scar age, laser type and laser treatment intervals on adult burn scars: A systematic review and meta-analysis[J]. PLoS One, 2023,18(9):e0292097. DOI: 10.1371/journal.pone.0292097.
    [68] ChoiJE, OhGN, KimJY, et al. Ablative fractional laser treatment for hypertrophic scars: comparison between Er:YAG and CO2 fractional lasers[J]. J Dermatolog Treat, 2014,25(4):299-303. DOI: 10.3109/09546634.2013.782090.
    [69] ChoSB, LeeSJ, ChungWS, et al. Treatment of burn scar using a carbon dioxide fractional laser[J]. J Drugs Dermatol, 2010,9(2):173-175.
    [70] KimS. Clinical trial of a pinpoint irradiation technique with the CO2 laser for the treatment of atrophic acne scars[J]. J Cosmet Laser Ther, 2008,10(3):177-180. DOI: 10.1080/14764170801930080.
    [71] ChristophelJJ, ElmC, EndrizziBT, et al. A randomized controlled trial of fractional laser therapy and dermabrasion for scar resurfacing[J]. Dermatol Surg, 2012,38(4):595-602. DOI: 10.1111/j.1524-4725.2011.02283.x.
    [72] OmiT, NumanoK. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology[J]. Laser Ther, 2014,23(1):49-60. DOI: 10.5978/islsm.14-RE-01.
    [73] LiangYY, ShenJC, LiW. Evolution of compressive mechanical properties of early hypertrophic scar during laser treatment[J]. J Biomech, 2021,129:110783. DOI: 10.1016/j.jbiomech.2021.110783.
    [74] NaouriM, AtlanM, PerrodeauE, et al. Skin tightening induced by fractional CO(2) laser treatment: quantified assessment of variations in mechanical properties of the skin[J]. J Cosmet Dermatol, 2012,11(3):201-206. DOI: 10.1111/j.1473-2165.2012.00627.x.
  • 图  1  机械-化学-生物学三者的动态耦合与协同作用共同调控瘢痕发展的示意图

    图  2  瘢痕内减张方案中的慢吸收光滑缝线的矩形缝合和慢吸收倒刺缝线的W形缝合模式图

    图  3  将缝合针前半部分掰直

    图  4  HBIS联合二氧化碳点阵激光治疗患者额部外科切口线性瘢痕的效果

    注:箭头指示患者头部方向;HBIS为水平埋没皮内缝合

  • 加载中
图(5)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-13
  • 网络出版日期:  2026-01-30

目录

    /

    返回文章
    返回