Volume 38 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
Shen JS,Xu YA.Research advances on the regulatory mechanism of sweat secretion ion channels of eccrine sweat glands[J].Chin J Burns Wounds,2022,38(8):794-798.DOI: 10.3760/cma.j.cn501120-20210517-00191.
Citation: Shen JS,Xu YA.Research advances on the regulatory mechanism of sweat secretion ion channels of eccrine sweat glands[J].Chin J Burns Wounds,2022,38(8):794-798.DOI: 10.3760/cma.j.cn501120-20210517-00191.

Research advances on the regulatory mechanism of sweat secretion ion channels of eccrine sweat glands

doi: 10.3760/cma.j.cn501120-20210517-00191
Funds:

General Program of National Natural Science Foundation of China 81571916, 81372079

Youth Science Foundation Project of National Natural Science Foundation of China 81201478

More Information
  • Sweat glands are widely distributed in human skin, among which eccrine sweat glands play major roles in heat dissipation and sweat secretion. Sweat secretion is mainly regulated by nervous system and includes two processes of secretion of secretory coil and reabsorption of sweat duct, involving various ion channels and proteins such as calcium ion channel, potassium ion channel, sodium-potassium-chloride co-transporter 1, Best2 protein, aquaporin 5, cystic fibrosis transmembrane conductance regulator, and epithelial sodium ion channel. This paper reviews the nerve conduction system and various ion channels involved in sweat secretion of exocrine sweat glands in order to provide a theoretical basis for the study of regeneration, repair, and transformation of stem cells.

     

  • loading
  • [1]
    Saint-CriqV, GrayMA. Role of CFTR in epithelial physiology[J]. Cell Mol Life Sci, 2017, 74(1):93-115. DOI: 10.1007/s00018-016-2391-y.
    [2]
    HuY, ConverseC, LyonsMC, et al. Neural control of sweat secretion: a review[J]. Br J Dermatol, 2018, 178(6):1246-1256. DOI: 10.1111/bjd.15808.
    [3]
    刘煜凡, 黄沙, 付小兵. 皮肤附属器汗腺发育及功能的机制研究[J]. 生命科学, 2020, 32(3):219-226. DOI: 10.13376/j.cbls/2020030.
    [4]
    DiaoJ, LiuJ, WangS, et al. Sweat gland organoids contribute to cutaneous wound healing and sweat gland regeneration[J]. Cell Death Dis, 2019, 10(3):238. DOI: 10.1038/s41419-019-1485-5.
    [5]
    KlakaP, GrüdlS, BanowskiB, et al. A novel organotypic 3D sweat gland model with physiological functionality[J]. PLoS One, 2017, 12(8):e0182752. DOI: 10.1371/journal.pone.0182752.
    [6]
    SasakiS, WatanabeJ, OhtakiH, et al. Pituitary adenylate cyclase-activating polypeptide promotes eccrine gland sweat secretion[J]. Br J Dermatol, 2017, 176(2):413-422. DOI: 10.1111/bjd.14885.
    [7]
    StevensLM, LandisSC. Development and properties of the secretory response in rat sweat glands: relationship to the induction of cholinergic function in sweat gland innervation[J]. Dev Biol, 1987, 123(1):179-190. DOI: 10.1016/0012-1606(87)90440-4.
    [8]
    GrantMP, LandisSC, SiegelRE. The molecular and pharmacological properties of muscarinic cholinergic receptors expressed by rat sweat glands are unaltered by denervation[J]. J Neurosci, 1991, 11(12):3763-3771. DOI: 10.1523/JNEUROSCI.11-12-03763.1991.
    [9]
    AlzayadyKJ, WangL, ChandrasekharR, et al. Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca2+ release[J]. Sci Signal, 2016, 9(422):ra35. DOI: 10.1126/scisignal.aad6281.
    [10]
    KlarJ, HisatsuneC, BaigSM, et al. Abolished InsP3R2 function inhibits sweat secretion in both humans and mice[J]. J Clin Invest, 2014, 124(11):4773-4780. DOI: 10.1172/JCI70720.
    [11]
    SatoK, SatoF. Role of calcium in cholinergic and adrenergic mechanisms of eccrine sweat secretion[J]. Am J Physiol, 1981, 241(3):C113-120. DOI: 10.1152/ajpcell.1981.241.3.C113.
    [12]
    Metzler-WilsonK, SammonsDL, OssimMA, et al. Extracellular calcium chelation and attenuation of calcium entry decrease in vivo cholinergic-induced eccrine sweating sensitivity in humans[J]. Exp Physiol, 2014, 99(2):393-402. DOI: 10.1113/expphysiol.2013.076547.
    [13]
    ConcepcionAR, VaethM, WagnerLE, et al. Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function[J]. J Clin Invest, 2016, 126(11):4303-4318. DOI: 10.1172/JCI89056.
    [14]
    DerouicheS, TakayamaY, MurakamiM, et al. TRPV4 heats up ANO1-dependent exocrine gland fluid secretion[J]. FASEB J, 2018, 32(4):1841-1854. DOI: 10.1096/fj.201700954R.
    [15]
    DelporteC. Aquaporins and gland secretion[J]. Adv Exp Med Biol, 2017, 969:63-79. DOI: 10.1007/978-94-024-1057-0_4.
    [16]
    SatoF, SatoK. Effect of periglandular ionic composition and transport inhibitors on rhesus monkey eccrine sweat gland function in vitro[J]. J Physiol, 1987, 393:195-212. DOI: 10.1113/jphysiol.1987.sp016819.
    [17]
    Ertongur-FauthT, HochheimerA, BuescherJM, et al. A novel TMEM16A splice variant lacking the dimerization domain contributes to calcium-activated chloride secretion in human sweat gland epithelial cells[J]. Exp Dermatol, 2014, 23(11):825-831. DOI: 10.1111/exd.12543.
    [18]
    OwjiAP, ZhaoQ, JiC, et al. Structural and functional characterization of the bestrophin-2 anion channel[J]. Nat Struct Mol Biol, 2020, 27(4):382-391. DOI: 10.1038/s41594-020-0402-z.
    [19]
    CuiCY, ChildressV, PiaoY, et al. Forkhead transcription factor FoxA1 regulates sweat secretion through Bestrophin 2 anion channel and Na-K-Cl cotransporter 1[J]. Proc Natl Acad Sci U S A, 2012, 109(4):1199-1203. DOI: 10.1073/pnas.1117213109.
    [20]
    MackGW, SmithBS, RowlandB. TEA-sensitive K+ channels and human eccrine sweat gland output[J]. J Appl Physiol (1985), 2019, 127(4):921-929. DOI: 10.1152/japplphysiol.00308.2019.
    [21]
    CuiCY, SimaJ, YinM, et al. Identification of potassium and chloride channels in eccrine sweat glands[J]. J Dermatol Sci, 2016, 81(2):129-131. DOI: 10.1016/j.jdermsci.2015.11.001.
    [22]
    InoueR. New findings on the mechanism of perspiration including aquaporin-5 water channel[J]. Curr Probl Dermatol, 2016, 51:11-21. DOI: 10.1159/000446754.
    [23]
    NejsumLN, KwonTH, JensenUB, et al. Functional requirement of aquaporin-5 in plasma membranes of sweat glands[J]. Proc Natl Acad Sci U S A, 2002, 99(1):511-516. DOI: 10.1073/pnas.012588099.
    [24]
    SongY, SonawaneN, VerkmanAS. Localization of aquaporin-5 in sweat glands and functional analysis using knockout mice[J]. J Physiol, 2002, 541(Pt 2):561-568. DOI: 10.1113/jphysiol.2001.020180.
    [25]
    HanukogluI, BoggulaVR, VaknineH, et al. Expression of epithelial sodium channel (ENaC) and CFTR in the human epidermis and epidermal appendages[J]. Histochem Cell Biol, 2017, 147(6):733-748. DOI: 10.1007/s00418-016-1535-3.
    [26]
    RauhR, HoernerC, KorbmacherC. δβγ-ENaC is inhibited by CFTR but stimulated by cAMP in Xenopus laevis oocytes[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312(2):L277-L287. DOI: 10.1152/ajplung.00375.2016.
    [27]
    HeM, ZhouT, NiuY, et al. The protease corin regulates electrolyte homeostasis in eccrine sweat glands[J]. PLoS Biol, 2021, 19(2):e3001090. DOI: 10.1371/journal.pbio.3001090.
    [28]
    张静娟, 王茂英, 赵洁, 等. 干细胞在汗腺再生中的应用研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(3):296-300. DOI: 10.3760/cma.j.cn501120-20210123-00033.
    [29]
    郎东浩, 巴特, 曹胜军, 等. 影响汗腺发育的信号通路及其参与汗腺样细胞体外重建的研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(2):195-200. DOI: 10.3760/cma.j.cn501120-20201020-00442.
    [30]
    SongW, YaoB, ZhuD, et al. 3D-bioprinted microenvironments for sweat gland regeneration[J/OL]. Burns Trauma, 2022, 10:tkab044[2022-06-06]. https://pubmed.ncbi.nlm.nih.gov/35071651/.DOI: 10.1093/burnst/tkab044.
    [31]
    WangR, WangY, YaoB, et al. Redirecting differentiation of mammary progenitor cells by 3D bioprinted sweat gland microenvironment[J/OL]. Burns Trauma, 2019, 7:29[2021-05-17]. https://pubmed.ncbi.nlm.nih.gov/31559316/.DOI: 10.1186/s41038-019-0167-y.
    [32]
    ZhangY, Enhejirigala, YaoB, et al. Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles[J/OL]. Burns Trauma, 2021, 9:tkab013[2022-06-17]. https://pubmed.ncbi.nlm.nih.gov/34213515/.DOI: 10.1093/burnst/tkab013.
    [33]
    朱冬振, 王一惠, 王睿, 等. 外源性肿瘤坏死因子α对三维环境下小鼠间充质干细胞向汗腺细胞分化的影响及机制[J]. 中华烧伤杂志, 2020, 36(3):187-194. DOI: 10.3760/cma.j.cn501120-20200105-00005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (381) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return