留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人脂肪间充质干细胞来源细胞外囊泡对高糖诱导的人脐静脉内皮细胞焦亡的影响及其机制

冯俊云 费潇 方邵一涵 安靖雯 施彦 刘德伍

冯俊云, 费潇, 方邵一涵, 等. 人脂肪间充质干细胞来源细胞外囊泡对高糖诱导的人脐静脉内皮细胞焦亡的影响及其机制[J]. 中华烧伤与创面修复杂志, 2025, 41(3): 258-267. DOI: 10.3760/cma.j.cn501225-20240120-00025.
引用本文: 冯俊云, 费潇, 方邵一涵, 等. 人脂肪间充质干细胞来源细胞外囊泡对高糖诱导的人脐静脉内皮细胞焦亡的影响及其机制[J]. 中华烧伤与创面修复杂志, 2025, 41(3): 258-267. DOI: 10.3760/cma.j.cn501225-20240120-00025.
Feng JY,Fei X,Fang SYH,et al.Influence and mechanism of extracellular vesicles derived from human adipose-derived mesenchymal stem cells on pyroptosis of human umbilical vein endothelial cells induced by high glucose[J].Chin J Burns Wounds,2025,41(3):258-267.DOI: 10.3760/cma.j.cn501225-20240120-00025.
Citation: Feng JY,Fei X,Fang SYH,et al.Influence and mechanism of extracellular vesicles derived from human adipose-derived mesenchymal stem cells on pyroptosis of human umbilical vein endothelial cells induced by high glucose[J].Chin J Burns Wounds,2025,41(3):258-267.DOI: 10.3760/cma.j.cn501225-20240120-00025.

人脂肪间充质干细胞来源细胞外囊泡对高糖诱导的人脐静脉内皮细胞焦亡的影响及其机制

doi: 10.3760/cma.j.cn501225-20240120-00025
基金项目: 

国家自然科学基金地区科学基金项目 82460447, 81460293

中医药防治代谢性疾病传承创新团队 2023090006KJZX2022WJW008

详细信息
    通讯作者:

    刘德伍,Email:dewuliu@126.com

Influence and mechanism of extracellular vesicles derived from human adipose-derived mesenchymal stem cells on pyroptosis of human umbilical vein endothelial cells induced by high glucose

Funds: 

Regional Science Foundation Project of National Natural Science Foundation of China 82460447, 81460293

Chongqing Traditional Chinese Medicine Inheritance and Innovation Team Project 2023090006KJZX2022WJW008

More Information
  • 摘要:   目的  探讨人脂肪间充质干细胞(hADMSC)来源细胞外囊泡(EV),即hADMSC-EV对高糖诱导的人脐静脉内皮细胞(HUVEC)焦亡的影响及其机制,为改善糖尿病创面中血管功能提供依据。  方法  该研究为实验研究。收集2023年6—9月于南昌大学第一附属医院妇产科完成正常阴道分娩的5名25~40岁产妇的脐带,分离HUVEC并成功鉴定;取同期于该院整形外科行腹部抽脂术的6名25~35岁健康女性的脂肪组织,分离hADMSC后提取hADMSC-EV并成功鉴定。将用含物质的量浓度为33 mmol/L葡萄糖的内皮细胞培养基培养的第4代HUVEC,分为加入磷酸盐缓冲液(PBS)培养的PBS组、加入hADMSC-EV培养的EV组、加入磷脂酰肌醇3-激酶/蛋白激酶B(PI3K/Akt)信号通路抑制剂LY294002和hADMSC-EV培养的EV+LY294002组,采用蛋白质印迹法检测细胞培养48 h后PI3K/Akt信号通路相关蛋白PI3K、Akt和焦亡相关蛋白核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)、胱天蛋白酶1(caspase-1)、消皮素D、白细胞介素1β(IL-1β)、IL-18的蛋白表达;采用细胞计数试剂盒-8检测细胞培养0(即刻)、12、24、36、48、60、72 h增殖水平;培养48 h后,行细胞划痕试验并计算划痕后12、24 h的细胞迁移率,行细胞Transwell试验并计算细胞24 h迁移数量,行细胞成管实验并测算细胞成管总长度与分支节点数。样本数均为3。  结果  培养48 h后,EV组细胞中PI3K和Akt的蛋白表达均明显高于PBS组(P<0.05),EV+LY294002组细胞中PI3K和Akt的蛋白表达均明显低于EV组(P<0.05)。培养48 h后,EV组细胞中NLRP3、caspase-1、消皮素D、IL-1β、IL-18的蛋白表达分别为0.54±0.08、0.96±0.11、0.525±0.061、1.216±0.039、1.317±0.023,均明显低于PBS组的2.32±0.11、1.86±0.07、1.256±0.113、2.589±0.084、2.042±0.132(P<0.05);EV+LY294002组细胞中NLRP3、caspase-1、消皮素D、IL-1β、IL-18的蛋白表达分别为1.16±0.05、1.37±0.06、0.962±0.028、1.834±0.017、1.803±0.065,均明显高于EV组(P<0.05)。培养12、24、36、48、60、72 h,EV组细胞增殖水平均明显高于PBS组(P<0.05),EV+LY294002组细胞增殖水平均明显低于EV组(P<0.05)。培养48 h后,EV组细胞划痕后12、24 h迁移率均明显高于PBS组(P<0.05),EV+LY294002组细胞划痕后12、24 h迁移率均明显低于EV组(P<0.05);EV组细胞24 h迁移数量明显多于PBS组(P<0.05),EV+LY294002组细胞24 h迁移数量明显少于EV组(P<0.05)。培养48 h后,与PBS组比较,EV组细胞成管总长度明显延长(P<0.05)且分支节点数明显增多(P<0.05);与EV组比较,EV+LY294002组细胞成管总长度明显缩短(P<0.05)且分支节点数明显减少(P<0.05)。  结论  hADMSC-EV可通过PI3K/Akt信号通路抑制高糖诱导的HUVEC焦亡相关蛋白的表达,并改善细胞增殖、迁移和血管形成能力。

     

  • 参考文献(40)

    [1] PatelS,SrivastavaS,SinghMR,et al.Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing[J].Biomed Pharmacother,2019,112:108615.DOI: 10.1016/j.biopha.2019.108615.
    [2] PopMA,AlmquistBD.Biomaterials: a potential pathway to healing chronic wounds?[J].Exp Dermatol,2017,26(9):760-763.DOI: 10.1111/exd.13290.
    [3] ZhouC,ZhangB,YangY,et al.Stem cell-derived exosomes: emerging therapeutic opportunities for wound healing[J].Stem Cell Res Ther,2023,14(1):107.DOI: 10.1186/s13287-023-03345-0.
    [4] 陈祎琦,周莹芊,魏茜,等.负载人脐带间充质干细胞来源的小细胞外囊泡的甲基丙烯酸酐化明胶水凝胶治疗小鼠全层皮肤缺损创面的效果[J].中华烧伤与创面修复杂志,2024,40(4):323-332.DOI: 10.3760/cma.j.cn501225-20231218-00248.
    [5] 居裔昆,方柏荣.脂肪间充质干细胞外囊泡促进创面血管生成机制的研究进展[J].中华烧伤与创面修复杂志,2023,39(1):85-90.DOI: 10.3760/cma.j.cn501225-20220322-00080.
    [6] LelekJ,Zuba-SurmaEK.Perspectives for future use of extracellular vesicles from umbilical cord- and adipose tissue-derived mesenchymal stem/stromal cells in regenerative therapies-synthetic review[J].Int J Mol Sci,2020,21(3):799.DOI: 10.3390/ijms21030799.
    [7] BergsbakenT,FinkSL,CooksonBT.Pyroptosis: host cell death and inflammation[J].Nat Rev Microbiol,2009,7(2):99-109.DOI: 10.1038/nrmicro2070.
    [8] MullaJ,KattiR,ScottMJ.The role of gasdermin-D-mediated pyroptosis in organ injury and its therapeutic implications[J].Organogenesis,2023,19(1):2177484.DOI: 10.1080/15476278.2023.2177484.
    [9] BandharamN,LockeyRF,KolliputiN.Pyroptosis inhibition in disease treatment: opportunities and challenges[J].Cell Biochem Biophys,2023,81(4):615-619.DOI: 10.1007/s12013-023-01181-w.
    [10] MuX,WuX,HeW,et al.Pyroptosis and inflammasomes in diabetic wound healing[J].Front Endocrinol (Lausanne),2022,13:950798.DOI: 10.3389/fendo.2022.950798.
    [11] Al MamunA,ShaoC,GengP,et al.The mechanism of pyroptosis and its application prospect in diabetic wound healing[J].J Inflamm Res,2024,17:1481-1501.DOI: 10.2147/JIR.S448693.
    [12] LiuW,YuanY,LiuD.Extracellular vesicles from adipose-derived stem cells promote diabetic wound healing via the PI3K-AKT-mTOR-HIF-1α signaling pathway[J].Tissue Eng Regen Med,2021,18(6):1035-1044.DOI: 10.1007/s13770-021-00383-8.
    [13] SongY,YouY,XuX,et al.Adipose-derived mesenchymal stem cell-derived exosomes biopotentiated extracellular matrix hydrogels accelerate diabetic wound healing and skin regeneration[J].Adv Sci (Weinh),2023,10(30):e2304023.DOI: 10.1002/advs.202304023.
    [14] SidhomK,ObiPO,SaleemA.A review of exosomal isolation methods: is size exclusion chromatography the best option?[J].Int J Mol Sci,2020,21(18):6466.DOI: 10.3390/ijms21186466.
    [15] HouL,ZhangX,DuH.Advances in mesenchymal stromal cells and nanomaterials for diabetic wound healing[J].Diabetes Metab Res Rev,2023,39(4):e3638.DOI: 10.1002/dmrr.3638.
    [16] ChangM,NguyenTT.Strategy for treatment of infected diabetic foot ulcers[J].Acc Chem Res,2021,54(5):1080-1093.DOI: 10.1021/acs.accounts.0c00864.
    [17] DinhT,VevesA.Microcirculation of the diabetic foot[J].Curr Pharm Des,2005,11(18):2301-2309.DOI: 10.2174/1381612054367328.
    [18] Ramachandra BhatL,VedanthamS,KrishnanUM,et al.Methylglyoxal-an emerging biomarker for diabetes mellitus diagnosis and its detection methods[J].Biosens Bioelectron,2019,133:107-124.DOI: 10.1016/j.bios.2019.03.010.
    [19] KimJH,KimKA,ShinYJ,et al.Methylglyoxal induced advanced glycation end products (AGE)/receptor for AGE (RAGE)-mediated angiogenic impairment in bone marrow-derived endothelial progenitor cells[J].J Toxicol Environ Health A,2018,81(9):266-277.DOI: 10.1080/15287394.2018.1440185.
    [20] KimYH,TabataY.Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell-derived factor-1 and a macrophage recruitment agent enhances wound closure[J].J Biomed Mater Res A,2016,104(4):942-956.DOI: 10.1002/jbm.a.35635.
    [21] IzadiR,HejaziSH,BahramikiaS.Injection of stem cells derived from allogeneic adipose tissue, a new strategy for the treatment of diabetic wounds[J].J Diabetes Complications,2023,37(7):108496.DOI: 10.1016/j.jdiacomp.2023.108496.
    [22] ZhangH,GuY,ZhangK,et al.Roles and mechanisms of umbilical cord mesenchymal stem cells in the treatment of diabetic foot: a review of preclinical and clinical studies[J].J Diabetes Complications,2024,38(1):108671.DOI: 10.1016/j.jdiacomp.2023.108671.
    [23] WeiL,XuY,ZhangL,et al.Mesenchymal stem cells promote wound healing and effects on expression of matrix metalloproteinases-8 and 9 in the wound tissue of diabetic rats[J].Stem Cells Dev,2023,32(1/2):25-31.DOI: 10.1089/scd.2021.0218.
    [24] UzunE,GüneyA,GönenZB,et al.Intralesional allogeneic adipose-derived stem cells application in chronic diabetic foot ulcer: phase I/2 safety study[J].Foot Ankle Surg,2021,27(6):636-642.DOI: 10.1016/j.fas.2020.08.002.
    [25] ShiR,JinY,CaoC,et al.Localization of human adipose-derived stem cells and their effect in repair of diabetic foot ulcers in rats[J].Stem Cell Res Ther,2016,7(1):155.DOI: 10.1186/s13287-016-0412-2.
    [26] CaiF,ChenW,ZhaoR,et al.The capacity of exosomes derived from adipose-derived stem cells to enhance wound healing in diabetes[J].Front Pharmacol,2023,14:1063458.DOI: 10.3389/fphar.2023.1063458.
    [27] KalluriR,LeBleuVS.The biology, function, and biomedical applications of exosomes[J].Science,2020,367(6478):eaau6977.DOI: 10.1126/science.aau6977.
    [28] TangT,ChenL,ZhangM,et al.Exosomes derived from BMSCs enhance diabetic wound healing through circ-Snhg11 delivery[J].Diabetol Metab Syndr,2024,16(1):37.DOI: 10.1186/s13098-023-01210-x.
    [29] TengL,MaqsoodM,ZhuM,et al.Exosomes derived from human umbilical cord mesenchymal stem cells accelerate diabetic wound healing via promoting M2 macrophage polarization, angiogenesis, and collagen deposition[J].Int J Mol Sci,2022,23(18):10421.DOI: 10.3390/ijms231810421.
    [30] FuS,ZhangH,LiX,et al.Exosomes derived from human amniotic mesenchymal stem cells facilitate diabetic wound healing by angiogenesis and enrich multiple lncRNAs[J].Tissue Eng Regen Med,2023,20(2):295-308.DOI: 10.1007/s13770-022-00513-w.
    [31] 刘文剑,刘德伍.间充质干细胞来源细胞外囊泡促进糖尿病溃疡血管生成的研究进展[J].中华烧伤与创面修复杂志,2022,38(4):393-399.DOI: 10.3760/cma.j.cn501120-20201207-00520.
    [32] YuP,ZhangX,LiuN,et al.Pyroptosis: mechanisms and diseases[J].Signal Transduct Target Ther,2021,6(1):128.DOI: 10.1038/s41392-021-00507-5.
    [33] GuC,DragaD,ZhouC,et al.miR-590-3p inhibits pyroptosis in diabetic retinopathy by targeting NLRP1 and inactivating the NOX4 signaling pathway[J].Invest Ophthalmol Vis Sci,2019,60(13):4215-4223.DOI: 10.1167/iovs.19-27825.
    [34] YangK,LiuJ,ZhangX,et al.H3 relaxin alleviates migration, apoptosis and pyroptosis through P2X7R-mediated nucleotide binding oligomerization domain-like receptor protein 3 inflammasome activation in retinopathy induced by hyperglycemia[J].Front Pharmacol,2020,11:603689.DOI: 10.3389/fphar.2020.603689.
    [35] KongH,ZhaoH,ChenT,et al.Targeted P2X7/NLRP3 signaling pathway against inflammation, apoptosis, and pyroptosis of retinal endothelial cells in diabetic retinopathy[J].Cell Death Dis,2022,13(4):336.DOI: 10.1038/s41419-022-04786-w.
    [36] ShorningBY,DassMS,SmalleyMJ,et al.The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling[J].Int J Mol Sci,2020,21(12):4507.DOI: 10.3390/ijms21124507.
    [37] GoldbraikhD,NeufeldD,Eid-MutlakY,et al.USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation[J].EMBO Rep,2020,21(4):e48791.DOI: 10.15252/embr.201948791.
    [38] RezaeiS,NikpanjehN,RezaeeA,et al.PI3K/Akt signaling in urological cancers: tumorigenesis function, therapeutic potential, and therapy response regulation[J].Eur J Pharmacol,2023,955:175909.DOI: 10.1016/j.ejphar.2023.175909.
    [39] FontanaF,GiannittiG,MarchesiS,et al.The PI3K/Akt pathway and glucose metabolism: a dangerous liaison in cancer[J].Int J Biol Sci,2024,20(8):3113-3125.DOI: 10.7150/ijbs.89942.
    [40] AbidMR,GuoS,MinamiT,et al.Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells[J].Arterioscler Thromb Vasc Biol,2004,24(2):294-300.DOI: 10.1161/01.ATV.0000110502.10593.06.
  • 图  1  第4代人脐静脉内皮细胞形态及细胞中CD31表达情况 Alexa Fluor 488-4',6-二脒基-2-苯基吲哚×400。1A.细胞核(蓝色)染色情况;1B.细胞质中可见CD31阳性(绿色)表达;1C.1A与1B叠加图像,细胞呈燕麦状

    图  2  第4代人脂肪间充质干细胞培养30 d后成脂与成骨分化情况。2A.细胞中可见大量钙结节(暗红色)形成 茜素红×100;2B.细胞中可见大小不一的脂滴(红色)形成 油红O×100

    图  3  hADMSC-EV的形态与粒径及标记蛋白表达情况。3A.hADMSC-EV的形态为圆盘状,大小不等 透射电子显微镜×100 000;3B.hADMSC-EV粒径主要分布在100~150 nm;3C.蛋白质印迹法检测显示hADMSC-EV表达囊泡特异性标记蛋白CD9、CD63、Alix

    注:hADMSC-EV为人脂肪间充质干细胞来源细胞外囊泡,Alix为凋亡连接基因2相互作用蛋白X;图3B为横坐标经过lg处理后生成的图

    图  4  蛋白质印迹法检测的3组人脐静脉内皮细胞培养48 h后PI3K/Akt信号通路和焦亡相关蛋白的蛋白表达

    注:NLRP3为核苷酸结合寡聚化结构域样受体蛋白3,PI3K为磷脂酰肌醇3-激酶,Akt为蛋白激酶B,caspase-1为胱天蛋白酶1,IL为白细胞介素;条带上方1、2、3分别指示在高糖培养条件下分别加入磷酸盐缓冲液(PBS)、人脂肪间充质干细胞来源细胞外囊泡(hADMSC-EV)、LY294002+hADMSC-EV培养细胞的PBS组、细胞外囊泡(EV)组、EV+LY294002组

    图  5  3组人脐静脉内皮细胞培养48 h后经划痕试验检测的划痕后各时间点水平迁移情况 倒置相差显微镜×50。5A、5B、5C.分别为PBS组细胞划痕后0(即刻)、12、24 h的划痕面积,逐渐缩小;5D、5E、5F.分别为EV组细胞划痕后0、12、24 h的划痕面积,图5D与图5A划痕面积相近,图5E、5F划痕面积分别明显小于图5B、5C;5G、5H、5I.分别为EV+LY294002组细胞划痕后0、12、24 h的划痕面积,图5G与图5D划痕面积相近,图5H、5I划痕面积分别明显大于图5E、5F

    注:磷酸盐缓冲液(PBS)组、细胞外囊泡(EV)组、EV+LY294002组细胞于高糖培养条件下分别加入PBS、人脂肪间充质干细胞来源EV(hADMSC-EV)、LY294002+hADMSC-EV培养

    图  6  3组人脐静脉内皮细胞培养48 h后经Transwell试验检测的24 h垂直迁移情况 结晶紫×200。6A.PBS组细胞迁移数量一般;6B.EV组细胞迁移数量明显多于图6A;6C.EV+LY294002组细胞迁移数量明显少于图6B

    注:磷酸盐缓冲液(PBS)组、细胞外囊泡(EV)组、EV+LY294002组细胞于高糖培养条件下分别加入PBS、人脂肪间充质干细胞来源EV(hADMSC-EV)、LY294002+hADMSC-EV培养

    图  7  3组人脐静脉内皮细胞培养48 h后成管情况 倒置相差显微镜×100。7A.PBS组血管较少;7B.EV组成管分支节点数明显多于图7A,成管总长度明显长于图7A;7C.EV+LY294002组成管分支节点数明显少于图7B,成管总长度明显短于图7B

    注:磷酸盐缓冲液(PBS)组、细胞外囊泡(EV)组、EV+LY294002组细胞于高糖培养条件下分别加入PBS、人脂肪间充质干细胞来源EV(hADMSC-EV)、LY294002+hADMSC-EV培养

    Table  1.   3组人脐静脉内皮细胞培养48 h后PI3K/Akt信号通路和焦亡相关蛋白的蛋白表达比较(x¯±s

    组别样本数PI3KAktNLRP3caspase-1消皮素DIL-1βIL-18
    PBS组30.64±0.080.875±0.1012.32±0.111.86±0.071.256±0.1132.589±0.0842.042±0.132
    EV组31.20±0.061.910±0.0260.54±0.080.96±0.110.525±0.0611.216±0.0391.317±0.023
    EV+LY294002组30.05±0.041.676±0.0431.16±0.051.37±0.060.962±0.0281.834±0.0171.803±0.065
    F93.49206.88356.5990.9770.0855.47478.26
    P<0.001<0.001<0.001<0.001<0.001<0.001<0.001
    P1<0.001<0.001<0.001<0.001<0.001<0.001<0.001
    P2<0.0010.014<0.0010.0020.0010.001<0.001
    注:磷酸盐缓冲液(PBS)组、细胞外囊泡(EV)组、EV+LY294002组细胞于高糖培养条件下分别加入PBS、人脂肪间充质干细胞来源EV(hADMSC-EV)、LY294002+hADMSC-EV培养;PI3K为磷脂酰肌醇3-激酶,Akt为蛋白激酶B,NLRP3为核苷酸结合寡聚化结构域样受体蛋白3,caspase-1为胱天蛋白酶1,IL为白细胞介素;F值、P值为组间各指标总体比较所得,P1值为EV组与PBS组各指标比较所得,P2值为EV+LY294002组与EV组各指标比较所得
    下载: 导出CSV

    Table  2.   3组人脐静脉内皮细胞培养各时间点增殖水平比较(x¯±s

    组别样本数0 h(即刻)12 h24 h36 h48 h60 h72 h
    PBS组30.086±0.0210.137±0.0190.218±0.0260.325±0.0240.431±0.0360.547±0.0320.647±0.039
    EV组30.088±0.0300.374±0.0280.480±0.0300.599±0.0590.761±0.0330.892±0.0421.002±0.032
    EV+LY294002组30.088±0.0320.195±0.0260.286±0.0270.397±0.0340.519±0.0350.644±0.0250.751±0.023
    P10.070<0.001<0.0010.002<0.001<0.001<0.001
    P20.2900.0010.0010.007<0.001<0.001<0.001
    注:磷酸盐缓冲液(PBS)组、细胞外囊泡(EV)组、EV+LY294002组细胞于高糖培养条件下分别加入PBS、人脂肪间充质干细胞来源EV(hADMSC-EV)、LY294002+hADMSC-EV培养;处理因素主效应,F=406.06,P<0.001;时间因素主效应,F=634.43,P<0.001;两者交互作用,F=12.79,P<0.001;P1值为EV组与PBS组各时间点比较所得,P2值为EV+LY294002组与EV组各时间点比较所得
    下载: 导出CSV

    Table  3.   3组人脐静脉内皮细胞培养48 h后经划痕试验检测的划痕后各时间点迁移率比较(%,x¯±s)

    组别样本数12 h24 h
    PBS组30.423±0.2870.735±0.075
    EV组30.671±0.4550.918±0.037
    EV+LY294002组30.532±0.0240.820±0.019
    F2 473.00108.81
    P<0.001<0.001
    P10.0010.019
    P20.0090.015
    注:磷酸盐缓冲液(PBS)组、细胞外囊泡(EV)组、EV+LY294002组细胞于高糖培养条件下分别加入PBS、人脂肪间充质干细胞来源EV(hADMSC-EV)、LY294002+hADMSC-EV培养;处理因素主效应,F=31.89,P<0.001;时间因素主效应,F=1 459.44,P<0.001;两者交互作用,F=11.54,P<0.001;F值、P值为组间各时间点总体比较所得,P1值为EV组与PBS组各时间点比较所得,P2值为EV+LY294002组与EV组各时间点比较所得
    下载: 导出CSV
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  69
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-20

目录

    /

    返回文章
    返回