留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重组人胶原蛋白生物材料在组织工程领域的应用研究进展

柳欢 奥布力阿西木·牙库普 金荣华 张惟 韩春茂 王新刚

柳欢, 奥布力阿西木·牙库普, 金荣华, 等. 重组人胶原蛋白生物材料在组织工程领域的应用研究进展[J]. 中华烧伤与创面修复杂志, 2025, 41(2): 188-194. DOI: 10.3760/cma.j.cn501225-20240229-00081.
引用本文: 柳欢, 奥布力阿西木·牙库普, 金荣华, 等. 重组人胶原蛋白生物材料在组织工程领域的应用研究进展[J]. 中华烧伤与创面修复杂志, 2025, 41(2): 188-194. DOI: 10.3760/cma.j.cn501225-20240229-00081.
Liu H,Yakupu ABLAXM,Jin RH,et al.Research advances on the application of recombinant human collagen biomaterials in the field of tissue engineering[J].Chin J Burns Wounds,2025,41(2):188-194.DOI: 10.3760/cma.j.cn501225-20240229-00081.
Citation: Liu H,Yakupu ABLAXM,Jin RH,et al.Research advances on the application of recombinant human collagen biomaterials in the field of tissue engineering[J].Chin J Burns Wounds,2025,41(2):188-194.DOI: 10.3760/cma.j.cn501225-20240229-00081.

重组人胶原蛋白生物材料在组织工程领域的应用研究进展

doi: 10.3760/cma.j.cn501225-20240229-00081
基金项目: 

国家重点研发计划 2022YFC2403100

国家自然科学基金面上项目 81772069

详细信息
    通讯作者:

    王新刚,Email:wangxingang8157@zju.edu.cn

Research advances on the application of recombinant human collagen biomaterials in the field of tissue engineering

Funds: 

National Key Research and Development Program of China 2022YFC2403100

General Program of National Natural Science Foundation of China 81772069

More Information
  • 摘要: 重大创烧伤等引起的大面积组织和器官缺损是临床上常见的问题。重组人胶原蛋白生物材料具有生物相容性良好、可定制化、氨基酸序列稳定、免疫原性低以及可生物降解等诸多优点,被广泛用于组织工程领域,具有广阔的临床应用前景。该文简要总结了重组人胶原蛋白生物材料的设计与制备方式、加工技术及其在组织工程领域的应用情况及最新研究进展。

     

  • 参考文献(51)

    [1] SorushanovaA,DelgadoLM,WuZ,et al.The collagen suprafamily: from biosynthesis to advanced biomaterial development[J].Adv Mater,2019,31(1):e1801651.DOI: 10.1002/adma.201801651.
    [2] 国家药品监督管理局重组胶原蛋白生物材料命名指导原则2021-03-152024-02-29https://www.nmpa.gov.cn/directory/web/nmpa/images/1615803527787088341.doc

    国家药品监督管理局. 重组胶原蛋白生物材料命名指导原则[EB/OL]. (2021-03-15) [2024-02-29]. https://www.nmpa.gov.cn/directory/web/nmpa/images/1615803527787088341.doc.

    [3] SpaansS,FransenPKH,SchotmanMJG,et al.Supramolecular modification of a sequence-controlled collagen-mimicking polymer[J].Biomacromolecules,2019,20(6):2360-2371.DOI: 10.1021/acs.biomac.9b00353.
    [4] TvaroškaI.Glycosylation modulates the structure and functions of collagen: a review[J].Molecules,2024,29(7):1417.DOI: 10.3390/molecules29071417.
    [5] CaoL,ZhangZ,YuanD,et al.Tissue engineering applications of recombinant human collagen: a review of recent progress[J].Front Bioeng Biotechnol,2024,12:1358246.DOI: 10.3389/fbioe.2024.1358246.
    [6] GreenMR,SambrookJ.Cloning and transformation with plasmid vectors[J].Cold Spring Harb Protoc,2021,2021(11).DOI: 10.1101/pdb.top101170.
    [7] ChastagnierL,MarquetteC,PetiotE.In situ transient transfection of 3D cell cultures and tissues, a promising tool for tissue engineering and gene therapy[J].Biotechnol Adv,2023,68:108211.DOI: 10.1016/j.biotechadv.2023.108211.
    [8] WuD,RobinsonCV.Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry[J].Curr Opin Struct Biol,2022,74:102351.DOI: 10.1016/j.sbi.2022.102351.
    [9] 梁鑫,张仁怀,吕自力,等.重组人Ⅲ型胶原蛋白的分离纯化[J].食品与发酵工业,2020,46(16):159-163.DOI: 10.13995/j.cnki.11-1802/ts.023967.
    [10] YangY,Campbell RitchieA,EverittNM.Recombinant human collagen/chitosan-based soft hydrogels as biomaterials for soft tissue engineering[J].Mater Sci Eng C Mater Biol Appl,2021,121:111846.DOI: 10.1016/j.msec.2020.111846.
    [11] ZhangY,WangY,LiY,et al.Application of collagen-based hydrogel in skin wound healing[J].Gels,2023,9(3):185.DOI: 10.3390/gels9030185.
    [12] LiuW,MerrettK,GriffithM,et al.Recombinant human collagen for tissue engineered corneal substitutes[J].Biomaterials,2008,29(9):1147-1158.DOI: 10.1016/j.biomaterials.2007.11.011.
    [13] WangZ,YangY,GaoY,et al.Establishing a novel 3D printing bioinks system with recombinant human collagen[J].Int J Biol Macromol,2022,211:400-409.DOI: 10.1016/j.ijbiomac.2022.05.088.
    [14] DengA,YangY,DuS,et al.Electrospinning of in situ crosslinked recombinant human collagen peptide/chitosan nanofibers for wound healing[J].Biomater Sci,2018,6(8):2197-2208.DOI: 10.1039/c8bm00492g.
    [15] YangY,XuR,WangC,et al.Recombinant human collagen-based bioinks for the 3D bioprinting of full-thickness human skin equivalent[J].Int J Bioprint,2022,8(4):611.DOI: 10.18063/ijb.v8i4.611.
    [16] 刘清华,李曌,恩和吉日嘎拉,等. 三维生物打印支架的拓扑结构介导的免疫反应对小鼠毛囊周期的影响[J]. 中华烧伤与创面修复杂志,2024,40(1):43-49. DOI: 10.3760/cma.j.cn501225-20231020-00125.
    [17] YangL,WuH,LuL,et al.A tailored extracellular matrix (ECM) - mimetic coating for cardiovascular stents by stepwise assembly of hyaluronic acid and recombinant human type III collagen[J].Biomaterials,2021,276:121055.DOI: 10.1016/j.biomaterials.2021.121055.
    [18] KangD,WangW,LiY,et al.Biological macromolecule hydrogel based on recombinant type I collagen/chitosan scaffold to accelerate full-thickness healing of skin wounds[J].Polymers (Basel),2023,15(19):3919.DOI: 10.3390/polym15193919.
    [19] ChenL,ZhuC,FanD,et al.A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility[J].J Biomed Mater Res A,2011,99(3):395-409.DOI: 10.1002/jbm.a.33202.
    [20] GuoY,BianZ,XuQ,et al.Novel tissue-engineered skin equivalent from recombinant human collagen hydrogel and fibroblasts facilitated full-thickness skin defect repair in a mouse model[J].Mater Sci Eng C Mater Biol Appl,2021,130:112469.DOI: 10.1016/j.msec.2021.112469.
    [21] MerivaaraA,ZiniJ,KoivunotkoE,et al.Preservation of biomaterials and cells by freeze-drying: change of paradigm[J].J Control Release,2021,336:480-498.DOI: 10.1016/j.jconrel.2021.06.042.
    [22] KatrilakaC,KaripidouN,PetrouN,et al.Freeze-drying process for the fabrication of collagen-based sponges as medical devices in biomedical engineering[J].Materials (Basel),2023,16(12):4425.DOI: 10.3390/ma16124425.
    [23] YamamotoT,RandriantsilefisoaR,SprecherCM,et al.Fabrication of collagen-hyaluronic acid cryogels by directional freezing mimicking cartilage arcade-like structure[J].Biomolecules,2022,12(12):1809.DOI: 10.3390/biom12121809.
    [24] JiD, LinY, GuoX, et al. Electrospinning of nanofibres[J]. Nature Reviews Methods Primers,2024,4(1). DOI: 10.1038/s43586-023-00278-z.
    [25] BazrafshanZ,StyliosGK.Spinnability of collagen as a biomimetic material: a review[J].Int J Biol Macromol,2019,129:693-705.DOI: 10.1016/j.ijbiomac.2019.02.024.
    [26] TytgatL,DobosA,MarkovicM,et al.High-resolution 3D bioprinting of photo-cross-linkable recombinant collagen to serve tissue engineering applications[J].Biomacromolecules,2020,21(10):3997-4007.DOI: 10.1021/acs.biomac.0c00386.
    [27] 罗高兴,周璇. 先进生物材料在创面修复中的应用[J]. 中华烧伤与创面修复杂志,2024,40(1):26-32. DOI: 10.3760/cma.j.cn501225-20231128-00211.
    [28] HumJ,BoccacciniAR.Collagen as coating material for 45s5 bioactive glass-based scaffolds for bone tissue engineering[J].Int J Mol Sci,2018,19(6):1807.DOI: 10.3390/ijms19061807.
    [29] DongZ,LiuQ,HanX,et al.Electrospun nanofibrous membranes of recombinant human collagen type III promote cutaneous wound healing[J].J Mater Chem B,2023,11(27):6346-6360.DOI: 10.1039/d3tb00438d.
    [30] DongY,ZhuW,LeiX,et al.Treatment of acute wounds with recombinant human-like collagen and recombinant human-like fibronectin in C57BL/6 mice individually or in combination[J].Front Bioeng Biotechnol,2022,10:908585.DOI: 10.3389/fbioe.2022.908585.
    [31] LongLY,LiuWQ,LiL,et al.Dissolving microneedle-encapsulated drug-loaded nanoparticles and recombinant humanized collagen type III for the treatment of chronic wound via anti-inflammation and enhanced cell proliferation and angiogenesis[J].Nanoscale,2022,14(4):1285-1295.DOI: 10.1039/d1nr07708b.
    [32] GuoY,XuB,WangY,et al.Dramatic promotion of wound healing using a recombinant human-like collagen and bFGF cross-linked hydrogel by transglutaminase[J].J Biomater Sci Polym Ed,2019,30(17):1591-1603.DOI: 10.1080/09205063.2019.1652416.
    [33] NuutilaK,PeuraM,SuomelaS,et al.Recombinant human collagen III gel for transplantation of autologous skin cells in porcine full-thickness wounds[J].J Tissue Eng Regen Med,2015,9(12):1386-1393.DOI: 10.1002/term.1691.
    [34] BenC, LiuX, ShenT, et al. A recombinant human collagen hydrogel for the treatment of partial-thickness burns: a prospective, self-controlled clinical study[J]. Burns,2021,47(3):634-642. DOI: 10.1016/j.burns.2020.01.006.
    [35] WiserI,TamirE,KaufmanH,et al.A novel recombinant human collagen-based flowable matrix for chronic lower limb wound management: first results of a clinical trial[J].Wounds,2019,31(4):103-107.
    [36] PasiniC, PandiniS, RamorinoG, et al. Tailoring the properties of composite scaffolds with a 3D-printed lattice core and a bioactive hydrogel shell for tissue engineering[J]. J Mech Behav Biomed Mater,2024,150:106305. DOI: 10.1016/j.jmbbm.2023.106305.
    [37] NazarovaNZ,UmarovaGS,VaimanM,et al.The surgical management of the cavity and bone defects in enchondroma cases: a prospective randomized trial[J].Surg Oncol,2021,37:101565.DOI: 10.1016/j.suronc.2021.101565.
    [38] YangC,HillasPJ,BáezJA,et al.The application of recombinant human collagen in tissue engineering[J].BioDrugs,2004,18(2):103-119.DOI: 10.2165/00063030-200418020-00004.
    [39] SunT,FengZ,HeW,et al.Novel 3D-printing bilayer GelMA-based hydrogel containing BP,β-TCP and exosomes for cartilage-bone integrated repair[J].Biofabrication,2023,16(1):015008. DOI: 10.1088/1758-5090/ad04fe.
    [40] UmeyamaR,YamawakiT,LiuD,et al.Optimization of culture duration of bone marrow cells before transplantation with a β-tricalcium phosphate/recombinant collagen peptide hybrid scaffold[J].Regen Ther,2020,14:284-295.DOI: 10.1016/j.reth.2020.04.005.
    [41] PulkkinenHJ,TiituV,ValonenP,et al.Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit[J].Osteoarthritis Cartilage,2013,21(3):481-490.DOI: 10.1016/j.joca.2012.12.004.
    [42] MuhonenV, SaloniusE, HaaparantaAM, et al. Articular cartilage repair with recombinant human type II collagen/polylactide scaffold in a preliminary porcine study[J]. J Orthop Res,2016,34(5):745-753. DOI: 10.1002/jor.23099.
    [43] HollandG,PanditA,Sánchez-AbellaL,et al.Artificial cornea: past, current, and future directions[J].Front Med (Lausanne),2021,8:770780.DOI: 10.3389/fmed.2021.770780.
    [44] MerrettK,FagerholmP,McLaughlinCR,et al.Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen[J].Invest Ophthalmol Vis Sci,2008,49(9):3887-3894.DOI: 10.1167/iovs.07-1348.
    [45] FagerholmP,LagaliNS,OngJA,et al.Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold[J].Biomaterials,2014,35(8):2420-2427.DOI: 10.1016/j.biomaterials.2013.11.079.
    [46] GibneyR,PattersonJ,FerrarisE.High-resolution bioprinting of recombinant human collagen type III[J].Polymers (Basel),2021,13(17):2973.DOI: 10.3390/polym13172973.
    [47] YuanH,LiX,LeeMS,et al.Collagen and chondroitin sulfate functionalized bioinspired fibers for tendon tissue engineering application[J].Int J Biol Macromol,2021,170:248-260.DOI: 10.1016/j.ijbiomac.2020.12.152.
    [48] FarkashU,AvisarE,VolkI,et al.First clinical experience with a new injectable recombinant human collagen scaffold combined with autologous platelet-rich plasma for the treatment of lateral epicondylar tendinopathy (tennis elbow)[J].J Shoulder Elbow Surg,2019,28(3):503-509.DOI: 10.1016/j.jse.2018.09.007.
    [49] McLaughlinS,McNeillB,PodrebaracJ,et al.Injectable human recombinant collagen matrices limit adverse remodeling and improve cardiac function after myocardial infarction[J].Nat Commun,2019,10(1):4866.DOI: 10.1038/s41467-019-12748-8.
    [50] MostertD,JorbaI,GroenenBGW,et al.Methacrylated human recombinant collagen peptide as a hydrogel for manipulating and monitoring stiffness-related cardiac cell behavior[J].iScience,2023,26(4):106423.DOI: 10.1016/j.isci.2023.106423.
    [51] 曾奕苇,刘海,沙川路,等.3D打印胶原基材料及其在口腔组织再生修复中的应用[J].皮革科学与工程,2023,33(2):47-54.DOI: 10.19677/j.issn.1004-7964.2023.02.008.
  • Table  1.   重组人胶原蛋白生物材料的改性技术及其目的

    技术具体方法目的
    化学技术使用交联剂,如1-乙基-3-(3-二甲基氨基丙基)碳二亚胺、N-羟基琥珀酰亚胺和1-乙基-3-(3-二甲基氨基丙基)碳二亚胺;甲基丙烯酸酐化增强稳定性、改善生物降解性、增强机械强度和韧性、增加功能性(促进组织再生性能和创面愈合性能等)、增加活性结合位点
    物理技术紫外线照射、冷冻-干燥技术、三维生物打印技术、生物涂层技术等目的同化学技术
    材料复合技术重组胶原复合壳聚糖、重组胶原复合甲基丙烯酸酐化明胶、重组胶原复合聚氧化乙烯等目的同化学技术
    生物技术优化发酵、酶处理等提高生物相容性、降低抗原性、定制化应用
    下载: 导出CSV
  • 加载中
表(1)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  112
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 网络出版日期:  2025-02-25

目录

    /

    返回文章
    返回