留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态对比增强磁共振成像评估兔肢体高压电烧伤后早期骨骼肌微循环灌注的可行性研究

阮鹏 孙斯琴 葛映红 查云飞

阮鹏, 孙斯琴, 葛映红, 等. 动态对比增强磁共振成像评估兔肢体高压电烧伤后早期骨骼肌微循环灌注的可行性研究[J]. 中华烧伤与创面修复杂志, 2025, 41(2): 163-170. DOI: 10.3760/cma.j.cn501225-20240517-00183.
引用本文: 阮鹏, 孙斯琴, 葛映红, 等. 动态对比增强磁共振成像评估兔肢体高压电烧伤后早期骨骼肌微循环灌注的可行性研究[J]. 中华烧伤与创面修复杂志, 2025, 41(2): 163-170. DOI: 10.3760/cma.j.cn501225-20240517-00183.
Ruan P,Sun SQ,Ge YH,et al.Research on the feasibility of dynamic contrast-enhanced magnetic resonance imaging in assessing the microcirculatory perfusion of skeletal muscle in rabbit limbs in the early stage after high-voltage electric burns[J].Chin J Burns Wounds,2025,41(2):163-170.DOI: 10.3760/cma.j.cn501225-20240517-00183.
Citation: Ruan P,Sun SQ,Ge YH,et al.Research on the feasibility of dynamic contrast-enhanced magnetic resonance imaging in assessing the microcirculatory perfusion of skeletal muscle in rabbit limbs in the early stage after high-voltage electric burns[J].Chin J Burns Wounds,2025,41(2):163-170.DOI: 10.3760/cma.j.cn501225-20240517-00183.

动态对比增强磁共振成像评估兔肢体高压电烧伤后早期骨骼肌微循环灌注的可行性研究

doi: 10.3760/cma.j.cn501225-20240517-00183
基金项目: 

湖北省科技厅中央引导地方科技发展专项 2022BGE264

武汉市科技局知识创新专项 2022020801020551

详细信息
    通讯作者:

    查云飞,Email:zhayunfei999@126.com

Research on the feasibility of dynamic contrast-enhanced magnetic resonance imaging in assessing the microcirculatory perfusion of skeletal muscle in rabbit limbs in the early stage after high-voltage electric burns

Funds: 

Central Guidance for Local Science and Technology Development Program of Hubei Province Science and Technology Department 2022BGE264

Knowledge Innovation Special Project of Wuhan Science and Technology Bureau 2022020801020551

More Information
  • 摘要:   目的  探讨动态对比增强磁共振成像(DCE-MRI)评估兔肢体高压电烧伤后早期骨骼肌微循环灌注的可行性。  方法  该研究为实验研究。取32只6~8个月龄雄性大耳白兔,采用随机数字表法将兔分为右下肢致高压电烧伤的电烧伤组(20只)及右下肢致假伤的对照组(12只)。伤后0.5、24.0、48.0、72.0 h,完成2组兔下肢轴位快速自旋回波T1加权成像、快速自旋回波T2加权成像及DCE-MRI检查,应用参考区域血流动力学模型获取损伤肢体骨骼肌血流灌注参数,包括容量转移常数Ktrans值、速率常数Kep值。取电烧伤组兔伤后0.5、24.0、48.0、72.0 h及对照组兔伤后0.5 h的骨骼肌组织,行免疫组织化学染色观察微血管情况并计算微血管密度(MVD)。分析电烧伤组兔伤后0.5~72.0 h骨骼肌组织Ktrans值、Kep值与MVD的相关性。电烧伤组样本数为5,对照组样本数为3。  结果  电烧伤组兔骨骼肌组织Ktrans值和Kep值均在伤后0.5~72.0 h呈先升高后降低的趋势,且在伤后24.0 h达到峰值。电烧伤组兔伤后0.5、24.0、48.0、72.0 h骨骼肌组织Ktrans值(t值分别为-15.77、-14.91、-40.35、-40.25,P<0.05)及伤后0.5、24.0、48.0 h骨骼肌组织Kep值(t值分别为-5.39、-6.82、-6.83,P<0.05)均明显高于对照组。对照组兔伤后0.5 h及电烧伤组兔伤后0.5、24.0、48.0、72.0 h骨骼肌组织中MVD分别为(24.7±3.5)、(21.8±2.2)、(40.8±9.1)、(16.4±2.4)、(9.8±0.8)根/mm2。电烧伤组兔伤后24.0 h骨骼肌组织中MVD明显高于对照组伤后0.5 h (t=2.89,P<0.05),伤后48.0、72.0 h骨骼肌组织中MVD均明显低于对照组伤后0.5 h(t值分别为4.01、9.52,P<0.05)。电烧伤组兔伤后0.5~72.0 h骨骼肌组织中Ktrans值、Kep值均与MVD呈显著正相关(r值均为0.95,P<0.05)。  结论  DCE-MRI定量灌注参数Ktrans值及Kep值可有效反映兔肢体高压电烧伤后早期骨骼肌微循环灌注变化。

     

  • 参考文献(41)

    [1] 张庆富,郝嘉文.高压电烧伤进行性损伤的机制及防治策略[J].中华烧伤与创面修复杂志,2023,39(8):718-723.DOI: 10.3760/cma.j.cn501225-20230331-00107.
    [2] ParkKH,ParkWJ,KimMK,et al.Alterations in arterial function after high-voltage electrical injury[J].Crit Care,2012,16(1):R25.DOI: 10.1186/cc11190.
    [3] ZhouHM,XuSJ,WangL,et al.Influences of high-voltage electrical burns on the pulmonary microcirculation in rabbits[J].Clin Hemorheol Microcirc,2016,62(3):193-203.DOI: 10.3233/CH-141921.
    [4] LeeDH,DesaiMJ,GaugerEM.Electrical injuries of the hand and upper extremity[J].J Am Acad Orthop Surg,2019,27(1):e1-e8.DOI: 10.5435/JAAOS-D-17-00833.
    [5] PedrazziN,KleinH,GentzschT,et al.Predictors for limb amputation and reconstructive management in electrical injuries[J].Burns,2023,49(5):1103-1112.DOI: 10.1016/j.burns.2022.08.007.
    [6] 张伟,张卫东,陈斓,等.游离组织瓣修复巨大毁损性烧伤创面的策略及临床效果[J].中华烧伤与创面修复杂志,2024,40(9):818-827.DOI: 10.3760/cma.j.cn501225-20240609-00218.
    [7] 李利根,柴家科.肢体高压电烧伤软组织及血管损伤的影像学判断及临床意义[J].中华烧伤杂志,2020,36(11):1009-1012.DOI: 10.3760/cma.j.cn501120-20190904-00371.
    [8] LiX,HuangW,HolmesJH.Dynamic contrast-enhanced (DCE) MRI[J].Magn Reson Imaging Clin N Am,2024,32(1):47-61.DOI: 10.1016/j.mric.2023.09.001.
    [9] ZhangJL,LayecG,HanrahanC,et al.Exercise-induced calf muscle hyperemia: quantitative mapping with low-dose dynamic contrast enhanced magnetic resonance imaging[J].Am J Physiol Heart Circ Physiol,2019,316(1):H201-H211.DOI: 10.1152/ajpheart.00537.2018.
    [10] GaneshT,ZakherE,EstradaM,et al.Assessment of microvascular dysfunction in acute limb ischemia-reperfusion injury[J].J Magn Reson Imaging,2019,49(4):1174-1185.DOI: 10.1002/jmri.26308.
    [11] YangL,LiD,YanY,et al.Microvascular permeability and texture analysis of bone marrow in diabetic rabbits with critical limb ischemia based on dynamic contrast-enhanced magnetic resonance imaging[J].J Diabetes Investig,2024,15(5):584-593.DOI: 10.1111/jdi.14145.
    [12] QiL,XuL,WangWT,et al.Dynamic contrast-enhanced magnetic resonance imaging in denervated skeletal muscle: experimental study in rabbits[J].PLoS One,2019,14(4):e0215069.DOI: 10.1371/journal.pone.0215069.
    [13] 张伟,陈斓,杨飞,等. 上肢毁损性电烧伤的救治方法及其临床疗效[J]. 中华烧伤与创面修复杂志,2023,39(8):731-737.DOI: 10.3760/cma.j.cn501225-20230530-00188.
    [14] 杨智斌,牛建栋,马勇,等.CT血管造影及三维重建在组织瓣修复颈肩、腋窝及上臂高压电烧伤创面中的临床应用[J].中华烧伤杂志,2018,34(12):874-880.DOI: 10.3760/cma.j.issn.1009-2587.2018.12.011.
    [15] 黎淑娟,王正磊,朱维平,等.四肢高压电烧伤早期磁共振成像特点的临床研究[J].中华烧伤杂志,2017,33(12):750-756.DOI: 10.3760/cma.j.issn.1009-2587.2017.12.006.
    [16] 王巍,李振彩,姚文莲,等. 高压电击伤动物肌肉组织超声评估[J]. 临床军医杂志,2019,47(12):1310-1312,1315. DOI: 10.16680/j.1671-3826.2019.12.10.
    [17] HottaK,BehnkeBJ,MasamotoK,et al.Microvascular permeability of skeletal muscle after eccentric contraction-induced muscle injury: in vivo imaging using two-photon laser scanning microscopy[J].J Appl Physiol (1985),2018,125(2):369-380.DOI: 10.1152/japplphysiol.00046.2018.
    [18] HottaK,ShimotsuR,BehnkeBJ,et al.Effect of diabetes on microvascular morphology and permeability of rat skeletal muscle: in vivo imaging using two-photon laser scanning microscopy[J].J Appl Physiol (1985),2024,137(4):963-974.DOI: 10.1152/japplphysiol.00222.2024.
    [19] NguyenT,DavidsonBP.Contrast enhanced ultrasound perfusion imaging in skeletal muscle[J].J Cardiovasc Imaging,2019,27(3):163-177.DOI: 10.4250/jcvi.2019.27.e31.
    [20] ChangKV,LewHL,WangTG,et al.Use of contrast-enhanced ultrasonography in musculoskeletal medicine[J].Am J Phys Med Rehabil,2012,91(5):449-457.DOI: 10.1097/PHM.0b013e31823caaa3.
    [21] ChenSY,WangYW,ChenWS,et al.Update of contrast-enhanced ultrasound in musculoskeletal medicine: clinical perspectives-a review[J].J Med Ultrasound,2023,31(2):92-100.DOI: 10.4103/jmu.jmu_94_22.
    [22] ChouTH,NabaviniaM,TramNK,et al.Quantification of skeletal muscle perfusion in peripheral artery disease using 18F-sodium fluoride positron emission tomography imaging[J].J Am Heart Assoc,2024,13(4):e031823.DOI: 10.1161/JAHA.123.031823.
    [23] KnuutiJ,TuiskuJ,KärpijokiH,et al.Quantitative perfusion imaging with total-body PET[J].J Nucl Med,2023,64(Suppl 2):S11-19.DOI: 10.2967/jnumed.122.264870.
    [24] GuF,WuQ.Quantitation of dynamic total-body PET imaging: recent developments and future perspectives[J].Eur J Nucl Med Mol Imaging,2023,50(12):3538-3557.DOI: 10.1007/s00259-023-06299-w.
    [25] GriffithJF,YipSWY,van der HeijdenRA,et al.Perfusion imaging of the musculoskeletal system[J].Magn Reson Imaging Clin N Am,2024,32(1):181-206.DOI: 10.1016/j.mric.2023.07.004.
    [26] LuckJC,SicaCT,BlahaC,et al.Agreement between multiparametric MRI (PIVOT), Doppler ultrasound, and near-infrared spectroscopy-based assessments of skeletal muscle oxygenation and perfusion[J].Magn Reson Imaging,2023,96:27-37.DOI: 10.1016/j.mri.2022.11.003.
    [27] LiuB,HuL,WangL,et al.Evaluation of microvascular permeability of skeletal muscle and texture analysis based on DCE-MRI in alloxan-induced diabetic rabbits[J].Eur Radiol,2021,31(8):5669-5679.DOI: 10.1007/s00330-021-07705-3.
    [28] de MelloR,MaY,JiY,et al.Quantitative MRI musculoskeletal techniques: an update[J].AJR Am J Roentgenol,2019,213(3):524-533.DOI: 10.2214/AJR.19.21143.
    [29] KhalifaF,SolimanA,El-BazA,et al.Models and methods for analyzing DCE-MRI: a review[J].Med Phys,2014,41(12):124301.DOI: 10.1118/1.4898202.
    [30] 张庆富.高压电烧伤后微循环障碍及其诊治研究[J].中华烧伤与创面修复杂志,2024,40(8):713-718.DOI: 10.3760/cma.j.cn501225-20240523-00194.
    [31] 张庆富,许顺江,梁利民,等.高压电烧伤对大鼠小肠浆膜表面微循环灌流量的影响及己酮可可碱的干预作用[J].中华烧伤杂志,2017,33(3):166-170.DOI: 10.3760/cma.j.issn.1009-2587.2017.03.008.
    [32] SchweizerR,PedrazziN,KleinHJ,et al.Risk factors for mortality and prolonged hospitalization in electric burn injuries[J].J Burn Care Res,2021,42(3):505-512.DOI: 10.1093/jbcr/iraa192.
    [33] 李全,巴特,曹胜军,等.血栓弹力图联合常规凝血检测对电烧伤患者创伤性凝血病的早期诊断价值[J].中华烧伤与创面修复杂志,2024,40(8):740-745.DOI: 10.3760/cma.j.cn501225-20240416-00135.
    [34] ChiY,LiuX,ChaiJ.A narrative review of changes in microvascular permeability after burn[J].Ann Transl Med,2021,9(8):719.DOI: 10.21037/atm-21-1267.
    [35] 张丕红,黄晓元,黄跃生.深度电烧伤创面早期修复专家共识(2020版)[J].中华创伤杂志,2020,36(10):865-871.DOI: 10.3760/cma.j.cn501098-20200706-00488.
    [36] HaugeA,GaustadJV,HuangR,et al.DCE-MRI and quantitative histology reveal enhanced vessel maturation but impaired perfusion and increased hypoxia in bevacizumab-treated cervical carcinoma[J].Int J Radiat Oncol Biol Phys,2019,104(3):666-676.DOI: 10.1016/j.ijrobp.2019.03.002.
    [37] BayerML,Hoegberget-KaliszM,JensenMH,et al.Role of tissue perfusion, muscle strength recovery, and pain in rehabilitation after acute muscle strain injury: a randomized controlled trial comparing early and delayed rehabilitation[J].Scand J Med Sci Sports,2018,28(12):2579-2591.DOI: 10.1111/sms.13269.
    [38] MooshageCM,TsilingirisD,SchimpfleL,et al.Insulin resistance is associated with reduced capillary permeability of thigh muscles in patients with type 2 diabetes[J].J Clin Endocrinol Metab,2023,109(1):e137-e144.DOI: 10.1210/clinem/dgad481.
    [39] ChaiJk,LiLG,GaoQW,et al.Establishment of soft-tissue-injury model of high-voltage electrical burn and observation of its pathological changes[J].Burns,2009,35(8):1158-1164.DOI: 10.1016/j.burns.2009.02.010.
    [40] 张庆富,周慧敏,王车江,等. 高压电烧伤对兔心脏微循环的影响[J]. 中华烧伤杂志,2012,28(3):173-177.DOI: 10.3760/cma.j.issn.1009-2587.2012.03.004.
    [41] 谭红,张伟,谢卫国,等. 大鼠肢体电烧伤模型的病理学变化[J]. 中华实验外科杂志,2007,24(6):763.DOI: 10.3760/j.issn:1001-9030.2007.06.050.
  • 图  1  2组兔伤后24.0 h右下肢骨骼肌组织DCE-MRI检测情况。1A、1B、1C.分别为对照组增强快速自旋回波T1加权成像及Ktrans值、Kep值图像;1D、1E、1F.分别为电烧伤组增强快速自旋回波T1加权成像及Ktrans值、Kep值图像,图1E中Ktrans值和图1F中Kep值分别高于图1B、1C

    注:电烧伤组兔右下肢致高压电烧伤,对照组兔右下肢致假伤;DCE-MRI为动态对比增强磁共振成像;1A和1D中红色区域为感兴趣区;1B、1C和1E、1F右侧的色柱为比色卡,可根据颜色大致判断灌注参数大小,越接近红色代表灌注参数越大

    图  2  对照组兔伤后 0.5 h及电烧伤组兔伤后各时间点右下肢骨骼肌组织损伤情况 苏木精-伊红×200。2A.对照组伤后0.5 h,骨骼肌细胞结构完整、排列紧密;2B、2C、2D、2E.分别为电烧伤组伤后0.5、24.0、48.0、72.0 h,随着伤后时间的延长,骨骼肌纤维变性、坏死范围扩大,骨骼肌纤维周围炎症细胞数量增多

    注:电烧伤组兔右下肢致高压电烧伤,对照组兔右下肢致假伤

    图  3  对照组兔伤后 0.5 h及电烧伤组兔伤后各时间点右下肢骨骼肌组织中微血管情况 辣根过氧化物酶-二氨基联苯胺×200。3A.对照组伤后0.5 h;3B、3C、3D、3E.分别为电烧伤组伤后0.5、24.0、48.0、72.0 h,图3C微血管数量多于图3B、3D、3E

    注:电烧伤组兔右下肢致高压电烧伤,对照组兔右下肢致假伤;血管内皮细胞染色为棕色,细胞核染色为蓝色

    Table  1.   2组兔伤后各时间点右下肢骨骼肌组织DCE-MRI定量灌注参数比较(min-1,x¯±s)

    组别与指标样本数0.5 h24.0 h48.0 h72.0 h
    电烧伤组5
    Ktrans5.779±0.5588.255±0.8614.869±0.2332.937±0.122
    Kep2.226±0.6023.994±0.9221.882±0.5190.315±0.083
    对照组3
    Ktrans0.518±0.0540.595±0.0500.595±0.0330.633±0.029
    Kep0.272±0.1140.245±0.0380.296±0.0130.327±0.187
    t1-15.77-14.91-40.35-40.25
    P1<0.001<0.001<0.001<0.001
    t2-5.39-6.82-6.830.13
    P20.002<0.0010.0020.903
    注:电烧伤组兔右下肢致高压电烧伤,对照组兔右下肢致假伤;DCE-MRI为动态对比增强磁共振成像;Ktrans值、Kep值处理因素主效应,F值分别为949.69、98.30,P值均<0.001;时间因素主效应,F值分别为47.95、16.15,P值均<0.001;两者交互作用,F值分别为49.55、17.69,P值均<0.001;t1值、P1值及t2值、P2值分别为2组间各时间点Ktrans值、Kep值比较所得
    下载: 导出CSV
  • 阮鹏-视频.mp4
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  48
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-17

目录

    /

    返回文章
    返回