Comparison of the Phoenix scoring system and commonly used pediatric sepsis scores in predicting mortality risk in pediatric patients with severe sepsis under traditional standards
-
摘要:
目的 探讨包括菲尼克斯脓毒症评分(PSS)和菲尼克斯-8器官功能障碍评分(以下简称Phoenix-8)在内的菲尼克斯评分体系与常用儿童脓毒症评分在传统标准,即2005年国际儿童脓毒症共识会议诊断标准下严重脓毒症患儿临床特征与预后分析中的差异。 方法 该研究为回顾性观察性研究。2020年12月—2023年3月,南京医科大学附属儿童医院共收治202例符合入选标准的严重脓毒症患儿。根据《2024年国际儿童脓毒症与脓毒性休克定义共识》的脓毒症诊断标准将患儿分为脓毒症组和非脓毒症组,进一步地根据转归情况将脓毒症组患儿分为死亡亚组与存活亚组。收集并比较患儿年龄,住院费用,病死率、脓毒性休克发生率等疾病转归指标,心脏、肝、肺、肾等主要脏器的损伤及其关联情况,PSS、Phoenix-8与儿童序贯器官衰竭评分(pSOFA)、第3代小儿死亡危险评分(PRISM Ⅲ)、儿童器官功能障碍评分(PELOD-2)、儿童多器官功能障碍评分2(P-MODS)、小儿危重病例评分(PCIS)、儿童早期预警评分(PEWS)等常用儿童脓毒症评分。绘制受试者操作特征曲线和精确率-召回率曲线评估PSS、Phoenix-8及常用儿童脓毒症评分对传统标准下严重脓毒症患儿死亡风险的预测能力。将预测效能通过受试者操作特征曲线下面积(AUROC)进行量化。使用单因素logistic回归分析量化PSS和Phoenix-8预测死亡风险的比值比。根据患儿并发症及合并症情况,将传统标准下严重脓毒症患儿进一步分为合并中枢神经系统疾病、多重感染、心血管系统疾病、休克、恶性肿瘤等亚群。使用Hosmer-Lemeshow拟合优度检验评估PSS和Phoenix-8的校准能力,使用DeLong检验比较PSS与Phoenix-8的AUROC在不同亚群患儿死亡风险预测中差异是否有统计学意义。 结果 与非脓毒症组相比,脓毒症组患儿年龄明显更大(Z=-2.92,P<0.05),脓毒性休克发生率、病死率、住院费用及PRISM Ⅲ、PEWS、pSOFA、PELOD-2、PSS、Phoenix-8均明显升高(χ2值分别为21.28、13.64,Z值分别为-1.99、-5.33、-5.10、-8.55、-6.91、-10.98、-9.93,P<0.05),PCIS明显更低(Z=-3.34,P<0.05)。与存活亚组相比,死亡亚组患儿住院费用和PSS、Phoenix-8、PRISM Ⅲ、PEWS、pSOFA、PELOD-2、P-MODS均显著升高(Z值分别为-2.50、-3.50、-2.47、-5.11、-3.84、-2.94、-3.61、-3.04,P<0.05)。与存活亚组相比,死亡亚组患儿肺损伤、肝损伤的发生率均显著升高(χ2值分别为6.20、10.94,P<0.05),64.7%(97/150)的患儿合并2种或2种以上的器官功能损伤。针对传统标准下严重脓毒症患儿死亡风险的预测,PRISM Ⅲ、PCIS、PEWS、pSOFA、PELOD-2、P-MODS、PSS、Phoenix-8的AUROC均在0.70左右,最佳截断值分别为17.5、91.0、5.5、4.5、2.5、4.5、3.5、4.5;PELOD-2评分的灵敏度最高,为0.83;PRISM Ⅲ、PSS、Phoenix-8的特异度均较高,均>0.80。单因素logistic回归分析显示,入住儿科重症监护病房24 h内的PSS每增加1分,患儿死亡的相对风险增加63.7%(比值比为1.64,95%置信区间为1.34~1.99,P<0.05);Phoenix-8每增加1分,患儿死亡的相对风险增加37.5%(比值比为1.38,95%置信区间为1.18~1.60,P<0.05)。PSS与Phoenix-8预测合并中枢神经系统疾病、多重感染和心血管系统疾病的严重脓毒症患儿死亡风险的AUROC(0.80左右)均较大,预测合并休克、恶性肿瘤的严重脓毒症患儿死亡风险的AUROC(0.60~0.80)中等,均通过Hosmer-Lemeshow拟合优度检验(P>0.05)。DeLong检验显示,在各亚群患儿死亡风险预测能力上PSS与Phoenix-8比较,差异均无统计学意义(P>0.05)。 结论 PSS与Phoenix-8较大部分常用儿童脓毒症评分预测传统标准下严重脓毒症患儿死亡风险的特异度显著提高,在合并中枢神经系统疾病、多重感染和心血管系统疾病的严重脓毒症患儿中展现出更优秀的死亡风险预测能力。 Abstract:Objective To explore the differences between the Phoenix sepsis scoring system including Phoenix sepsis score (PSS) and Phoenix-8 organ dysfunction score (hereinafter referred to as Phoenix-8) and the commonly used pediatric sepsis scores in evaluating clinical characteristics and prognostic analysis of pediatric patients with severe sepsis diagnosed under traditional standards, namely the diagnostic criteria from the 2005 International Pediatric Sepsis Consensus Conference. Methods This study was a retrospective observational study. From December 2020 to March 2023, 202 pediatric patients with severe sepsis meeting the inclusion criteria were admitted to the Children's Hospital of Nanjing Medical University. Based on the sepsis diagnostic criteria outlined in the International Consensus Criteria for Pediatric Sepsis and Septic Shock (2024), the pediatric patients were categorized into a sepsis group and a non-sepsis group. Sepsis group was further subdivided into a death subgroup and a survival subgroup based on the outcomes. The age, hospitalization costs, disease outcome indicators (e.g., mortality rate and incidence of septic shock), major organ (e.g., heart, liver, lungs, and kidneys) damage and their correlations, as well as PSS, Phoenix-8 and commonly used pediatric sepsis scores (e.g., pediatric sequential organ failure assessment (pSOFA), pediatric risk of mortality score Ⅲ (PRISM Ⅲ), pediatric logistic organ dysfunction-2 score (PELOD-2), pediatric multiple organ dysfunction score (P-MODS), pediatric critical illness score (PCIS), and pediatric early warning score (PEWS)) were collected and compared. Receiver operating characteristic (ROC) curve and precision-recall curve were plotted to evaluate the predictive ability of PSS, Phoenix-8, and commonly used pediatric sepsis scores for mortality risk in pediatric patients with severe sepsis under traditional standards. Predictive performance was quantified using the area under the ROC curve (AUROC). Univariate logistic regression analysis was employed to quantify the odds ratios of PSS and Phoenix-8 for predicting mortality risk. Patients with severe sepsis under traditional standards were further stratified into subgroups based on complications and comorbidities, including central nervous system (CNS) diseases, multiple infections, cardiovascular system diseases, shock, and malignancies. The Hosmer-Lemeshow goodness-of-fit test was used to assess calibration of PSS and Phoenix-8, and the DeLong test was used to compare whether there were statistically significant differences in the AUROC of PSS and Phoenix-8 for predicting mortality risk among different subgroups of pediatric patients. Results Compared with those in non-sepsis group, pediatric patients in sepsis group were significantly older (Z=-2.92, P<0.05) with higher incidences of septic shock and mortality, hospitalization costs, PRISM Ⅲ, PEWS, pSOFA, PELOD-2, PSS, and Phoenix-8 (with χ² values of 21.28 and 13.64, respectively, Z values of -1.99, -5.33, -5.10, -8.55, -6.91, -10.98, and -9.93, respectively, P<0.05), and lower PCIS (Z=-3.34, P<0.05). Compared with those in survival subgroup, hospitalization costs, PSS, Phoenix-8, PRISM Ⅲ, PEWS, pSOFA, PELOD-2, and P-MODS of pediatric patients in death subgroup was significantly higher (with Z values of -2.50, -3.50, -2.47, -5.11, -3.84, -2.94, -3.61, and -3.04, respectively, P<0.05). Compared with those in survival subgroup, the incidences of lung damage and liver damage of pediatric patients in death subgroup were also significantly higher (with χ² values of 6.20 and 10.94, respectively, P<0.05), and 64.7% (97/150) of patients exhibited two or more concurrent organ damage. For predicting mortality risk in pediatric patients with severe sepsis under traditional standards, the AUROC values for PRISM Ⅲ, PCIS, PEWS, pSOFA, PELOD-2, P-MODS, PSS, and Phoenix-8 were approximately 0.70, with optimal cutoff values of 17.5, 91.0, 5.5, 4.5, 2.5, 4.5, 3.5, and 4.5, respectively; PELOD-2 demonstrated the highest sensitivity (0.83); while PRISM Ⅲ, PSS, and Phoenix-8 showed high specificity (>0.80). Univariate logistic regression analysis showed that for every 1-point increase in the PSS within 24 hours of pediatric intensive care unit admission, the relative risk of mortality increased by 63.7% (with odds ratio of 1.64, 95% confidence interval of 1.34-1.99, P<0.05). Similarly, for every 1-point increase in the Phoenix-8, the relative risk of mortality increased by 37.5% (with odds ratio of 1.38, 95% confidence interval of 1.18-1.60, P<0.05). The AUROC values (around 0.80) of PSS and Phoenix-8 for predicting mortality risk in pediatric patients with severe sepsis combined with CNS diseases, multiple infections, and cardiovascular system diseases were relatively high. In contrast, the AUROC values (0.60-0.80) for predicting mortality risk in pediatric patients with severe sepsis combined with shock or malignant tumors were moderate. All models passed the Hosmer-Lemeshow goodness-of-fit test (P>0.05). The DeLong test indicated no statistically significant differences in predictive ability between PSS and Phoenix-8 across subgroups of pediatric patients (P>0.05). Conclusions PSS and Phoenix-8 exhibited higher specificity than most of the commonly used pediatric sepsis scores in predicting mortality risk under traditional standards. Both scores performed much better in predicting the mortality risk in pediatric patients with severe sepsis combined with CNS diseases, multiple infections, and cardiovascular system diseases. -
Key words:
- Sepsis /
- Child /
- Intensive care units /
- Phoenix sepsis score /
- Phoenix-8 organ dysfunction score /
- Mortality risk
-
参考文献
(42) [1] CajanderS, KoxM, SciclunaBP, et al. Profiling the dysregulated immune response in sepsis: overcoming challenges to achieve the goal of precision medicine[J]. Lancet Respir Med, 2024,12(4):305-322. DOI: 10.1016/S2213-2600(23)00330-2. [2] 姚咏明, 张卉, 董宁. 脓毒症分型:精准治疗之基石[J].中华烧伤与创面修复杂志,2024,40(10):915-919. DOI: 10.3760/cma.j.cn501225-20240529-00203. [3] RuddKE, JohnsonSC, AgesaKM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020,395(10219):200-211. DOI: 10.1016/S0140-6736(19)32989-7. [4] 潘选良, 朱志康, 沈涛, 等. 特重度烧伤患者发生脓毒症与死亡的流行病学特点和危险因素[J].中华烧伤与创面修复杂志,2023,39(6):558-564. DOI: 10.3760/cma.j.cn501225-20220806-00336. [5] GoldsteinB, GiroirB, RandolphA, et al. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics[J]. Pediatr Crit Care Med, 2005,6(1):2-8. DOI: 10.1097/01.PCC.0000149131.72248.E6. [6] MaticsTJ, Sanchez-PintoLN. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the sepsis-3 definitions in critically ill children[J]. JAMA Pediatr, 2017,171(10):e172352. DOI: 10.1001/jamapediatrics.2017.2352. [7] SchlapbachLJ, WatsonRS, SorceLR, et al. International consensus criteria for pediatric sepsis and septic shock[J]. JAMA, 2024,331(8):665-674. DOI: 10.1001/jama.2024.0179. [8] 中华医学会烧伤外科学分会, 海峡两岸医药卫生交流协会暨烧创伤组织修复专委会. Ⅱ度烧伤创面治疗专家共识(2024版)Ⅱ:手术治疗和感染防治[J].中华烧伤与创面修复杂志,2024,40(2):101-118. DOI: 10.3760/cma.j.cn501225-20240112-00015. [9] Sanchez-PintoLN, BennettTD, DeWittPE, et al. Development and validation of the Phoenix criteria for pediatric sepsis and septic shock[J]. JAMA, 2024,331(8):675-686. DOI: 10.1001/jama.2024.0196. [10] 应佳云, 刘婷彦, 周文彬, 等. 《2024年国际共识标准:儿童脓毒症和脓毒性休克》解读[J].中国小儿急救医学,2024,31(5):322-326. DOI: 10.3760/cma.j.issn.1673-4912.2024.05.001. [11] DellingerRP, LevyMM, RhodesA, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012[J]. Crit Care Med, 2013,41(2):580-637. DOI: 10.1097/CCM.0b013e31827e83af. [12] PollackMM, PatelKM, RuttimannUE. PRISM III: an updated Pediatric Risk of Mortality score[J]. Crit Care Med, 1996,24(5):743-752. DOI: 10.1097/00003246-199605000-00004. [13] LeteurtreS, DuhamelA, SalleronJ, et al. PELOD-2: an update of the PEdiatric logistic organ dysfunction score[J]. Crit Care Med, 2013,41(7):1761-1773. DOI: 10.1097/CCM.0b013e31828a2bbd. [14] GracianoAL, BalkoJA, RahnDS, et al. The Pediatric Multiple Organ Dysfunction Score (P-MODS): development and validation of an objective scale to measure the severity of multiple organ dysfunction in critically ill children[J]. Crit Care Med, 2005,33(7):1484-1491. DOI: 10.1097/01.ccm.0000170943.23633.47. [15] 中华医学会儿科学分会急救学组.第四届全国小儿急救医学研讨会纪要[J].中华儿科杂志,1995,33(6):370-373. [16] 朱碧溱, 陆国平. 儿童早期预警评分[J].中华实用儿科临床杂志, 2018, 33(6):432-437. DOI: 10.3760/cma.j.issn.2095-428X.2018.06.009. [17] 张涛, 刘春峰. 2023版国际儿童急性呼吸窘迫综合征诊疗指南解读[J].中国小儿急救医学,2023,30(11):801-808. DOI: 10.3760/cma.j.issn.1673-4912.2023.11.001. [18] YehyaN, SmithL, ThomasNJ, et al. Definition, incidence, and epidemiology of pediatric acute respiratory distress syndrome: from the Second Pediatric Acute Lung Injury Consensus Conference[J]. Pediatr Crit Care Med, 2023,24(12 Suppl 2):S87-98. DOI: 10.1097/PCC.0000000000003161. [19] 刘霜, 曲东. 脓毒性心肌病临床诊治进展[J].中国小儿急救医学,2022,29(1):6-11. DOI: 10.3760/cma.j.issn.1673-4912.2022.01.002. [20] LawYM, LalAK, ChenS, et al. Diagnosis and management of myocarditis in children: a scientific statement from the American Heart Association[J]. Circulation, 2021,144(6):e123-e135. DOI: 10.1161/CIR.0000000000001001. [21] LevyMM, FinkMP, MarshallJC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference[J]. Intensive Care Med, 2003,29(4):530-538. DOI: 10.1007/s00134-003-1662-x. [22] NesselerN, LauneyY, AninatC, et al. Clinical review: the liver in sepsis[J]. Crit Care, 2012,16(5):235. DOI: 10.1186/cc11381. [23] KobashiH, ToshimoriJ, YamamotoK. Sepsis-associated liver injury: incidence, classification and the clinical significance[J]. Hepatol Res, 2013,43(3):255-266. DOI: 10.1111/j.1872-034X.2012.01069.x. [24] SchwartzGJ, SchneiderMF, MaierPS, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C[J]. Kidney Int, 2012,82(4):445-453. DOI: 10.1038/ki.2012.169. [25] DiseaseKidney: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease[J]. Kidney Int, 2024,105(4Suppl):S117-314. DOI: 10.1016/j.kint.2023.10.018. [26] SingerM, DeutschmanCS, SeymourCW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (sepsis-3)[J]. JAMA, 2016,315(8):801-810. DOI: 10.1001/jama.2016.0287. [27] BoneRC, BalkRA, CerraFB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine[J]. Chest, 1992,101(6):1644-1655. DOI: 10.1378/chest.101.6.1644. [28] BrierleyJ, CarcilloJA, ChoongK, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine[J]. Crit Care Med, 2009,37(2):666-688. DOI: 10.1097/CCM.0b013e31819323c6. [29] GanCS, WongJJ, SamransamruajkitR, et al. Differences between pulmonary and extrapulmonary pediatric acute respiratory distress syndrome: a multicenter analysis[J]. Pediatr Crit Care Med, 2018,19(10):e504-e513. DOI: 10.1097/PCC.0000000000001667. [30] 中国医师协会急诊医师分会, 中国研究型医院学会休克与脓毒症专业委员会. 中国脓毒症/脓毒性休克急诊治疗指南(2018)[J].中国急救医学,2018,38(9):741-756. DOI: 10.3969/j.issn.1002-1949.2018.09.001. [31] NatesJL, PèneF, DarmonM, et al. Septic shock in the immunocompromised cancer patient: a narrative review[J]. Crit Care, 2024,28(1):285. DOI: 10.1186/s13054-024-05073-0. [32] LelubreC, VincentJL. Mechanisms and treatment of organ failure in sepsis[J]. Nat Rev Nephrol, 2018,14(7):417-427. DOI: 10.1038/s41581-018-0005-7. [33] 李新胜, 白净, 崔树起, 等. 心肺交互作用的心血管系统模型及仿真研究[J].中国生物医学工程学报,2003,22(3):241-249. DOI: 10.3969/j.issn.0258-8021.2003.03.009. [34] 艾长顺, 秦广宁, 欧阳川, 等. 心肺交互作用的研究进展[J].中国医药,2017,12(8):1269-1272. DOI: 10.3760/cma.j.issn.1673-4777.2017.08.039. [35] BronickiRA, AnasNG. Cardiopulmonary interaction[J]. Pediatr Crit Care Med, 2009,10(3):313-322. DOI: 10.1097/PCC.0b013e31819887f0. [36] 张坤明, 魏容梅, 钱汉斌, 等. 肺炎支原体肺炎患儿心肌酶谱动态分析[J].实用儿科临床杂志,2003,18(8):617-618. DOI: 10.3969/j.issn.1003-515X.2003.08.014. [37] FanQ, MengJ, LiP, et al. Pathogenesis and association of Mycoplasma pneumoniae infection with cardiac and hepatic damage[J]. Microbiol Immunol, 2015,59(7):375-380. DOI: 10.1111/1348-0421.12267. [38] QiX, SunX, LiX, et al. Significance changes in the levels of myocardial enzyme in the child patients with Mycoplasma Pneumoniae Pneumonia[J]. Cell Mol Biol (Noisy-le-grand), 2020,66(6):41-45. [39] ZarbockA, NadimMK, PickkersP, et al. Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup[J]. Nat Rev Nephrol, 2023,19(6):401-417. DOI: 10.1038/s41581-023-00683-3. [40] StrnadP, TackeF, KochA, et al. Liver-guardian, modifier and target of sepsis[J]. Nat Rev Gastroenterol Hepatol, 2017,14(1):55-66. DOI: 10.1038/nrgastro.2016.168. [41] HenrionJ. Hypoxic hepatitis[J]. Liver Int, 2012,32(7):1039-1052. DOI: 10.1111/j.1478-3231.2011.02655.x. [42] JaborniskyR, KuppermannN, González-DambrauskasS. Transitioning from SIRS to Phoenix with the updated pediatric sepsis criteria-the difficult task of simplifying the complex[J]. JAMA, 2024,331(8):650-651. DOI: 10.1001/jama.2023.27988. -
Table 1. 2组患儿一般资料及儿科重症监护病房评分情况的比较
组别 例数 年龄[月,M(Q1,Q3)] 性别(例) 体重指数[kg/m2,M(Q1,Q3)] 脓毒性休克[例(%)] 病死情况[例(%)] 住院费用[万元,M(Q1,Q3)] 男 女 非脓毒症组 52 7.5(2.0,24.5) 34 18 16.01(14.50,17.45) 0(0) 1(1.9) 7.36(5.09,10.17) 脓毒症组 150 20.0(4.2,97.8) 92 58 16.35(14.41,18.50) 50(33.3) 41(27.3) 8.28(5.24,18.94) 统计量 Z=-2.92 χ2=0.13 Z=-0.96 χ2=21.28 χ2=13.64 Z=-1.99 P值 0.003 0.724 0.337 <0.001 <0.001 0.047 注:本表格中的患儿分组标准为《2024年国际儿童脓毒症与脓毒性休克定义共识》中的脓毒症诊断标准;PRISM Ⅲ为第3代小儿死亡危险评分,PCIS为小儿危重病例评分,PEWS为儿童早期预警评分,pSOFA为儿童序贯器官衰竭评分,PELOD-2为儿童器官功能障碍评分2,P-MODS为儿童多器官功能障碍评分,PSS为菲尼克斯脓毒症评分,Phoenix-8为菲尼克斯-8器官功能障碍评分 Table 2. 2组脓毒症患儿一般资料及儿科重症监护病房评分情况的比较
组别 例数 年龄[月,M(Q1,Q3)] 性别(例) 体重指数[kg/m2,M(Q1,Q3)] 总住院时间[d,M(Q1,Q3)] 住PICU时间[d,M(Q1,Q3)] 住院费用[万元,M(Q1,Q3)] 男 女 存活亚组 109 21.00(4.00,100.00) 62 47 16.46(14.35,18.50) 27.00(19.00,43.00) 15.00(10.00,28.00) 7.71(4.69,15.36) 死亡亚组 41 20.00(5.00,60.00) 30 11 15.87(14.53,18.37) 26.00(13.00,42.00) 17.00(11.00,27.00) 10.95(6.81,26.01) 统计量值 Z=-0.21 χ2=2.68 Z=-0.40 Z=-1.22 Z=-0.06 Z=-2.50 P值 0.836 0.101 0.690 0.224 0.950 0.012 注:纳入患儿为符合《2024年国际儿童脓毒症与脓毒性休克定义共识》标准的脓毒症患儿;PSS为菲尼克斯脓毒症评分,Phoenix-8为菲尼克斯-8器官功能障碍评分,PRISM Ⅲ为第3代小儿死亡危险评分,PCIS为小儿危重病例评分,PEWS为儿童早期预警评分,pSOFA为儿童序贯器官衰竭评分,PELOD-2为儿童器官功能障碍评分2,P-MODS为儿童多器官功能障碍评分 Table 3. 2组脓毒症患儿主要脏器损伤情况比较[例(%)]
组别 例数 肺损伤 心脏损伤 肝损伤 肾损伤 存活亚组 109 65(59.6) 68(62.4) 16(14.7) 43(39.4) 死亡亚组 41 34(82.9) 30(73.2) 17(41.5) 21(51.2) χ2值 6.20 1.09 10.94 1.24 P值 0.013 0.296 0.001 0.265 注:纳入患儿为符合《2024年国际儿童脓毒症与脓毒性休克定义共识》标准的脓毒症患儿 Table 4. PSS和Phoenix-8与常用儿童脓毒症评分对传统标准下202例严重脓毒症患儿死亡风险的预测能力比较
评分类型 受试者操作特征曲线 精确率-召回率曲线 最佳截断值 灵敏度 特异度 AUROC(95%置信区间) Hosmer-Lemeshow拟合优度检验 AUPRC F1分数 χ2值 P值 PRISM Ⅲ 17.5 0.62 0.87 0.81(0.74~0.88) 2.40 0.122 0.51 0.59 PCIS 91.0 0.76 0.44 0.61(0.52~0.71) 1.34 0.511 0.17 0.35 PEWS 5.5 0.69 0.71 0.74(0.66~0.82) 1.12 0.571 0.37 0.50 pSOFA 4.5 0.79 0.61 0.75(0.67~0.82) 4.91 0.086 0.37 0.48 PELOD-2 2.5 0.83 0.61 0.76(0.68~0.84) 4.24 0.120 0.48 0.50 P-MODS 4.5 0.60 0.76 0.69(0.60~0.78) 4.90 0.086 0.35 0.47 PSS 3.5 0.57 0.83 0.77(0.69~0.84) 4.16 0.125 0.43 0.52 Phoenix-8 4.5 0.48 0.88 0.73(0.64~0.81) 2.46 0.293 0.37 0.49 注:纳入患儿为符合传统标准,即2005年国际儿童脓毒症共识会议诊断标准的严重脓毒症患儿;PSS为菲尼克斯脓毒症评分,Phoenix-8为菲尼克斯-8器官功能障碍评分,PRISM Ⅲ为第3代小儿死亡危险评分,PCIS为小儿危重病例评分,PEWS为儿童早期预警评分,pSOFA为儿童序贯器官衰竭评分,PELOD-2为儿童器官功能障碍评分2,P-MODS为儿童多器官功能障碍评分,AUROC为受试者操作特征曲线下面积,AUPRC为精确率-召回率曲线下面积;F1分数表示PSS和Phoenix-8预测传统标准下严重脓毒症患儿死亡风险的精确率与召回率的调和平均数,反映模型分类能力及其均衡性 Table 5. PSS和Phoenix-8对202例不同亚群严重脓毒症患儿死亡风险的预测价值
亚群分类及评分 例数 最佳截断值 灵敏度 特异度 受试者操作特征曲线下面积(95%置信区间) Hosmer-Lemeshow拟合优度检验 DeLong检验 χ2值 P值 Z值 P值 中枢神经系统疾病患儿 79 PSS 3.5 0.70 0.92 0.87(0.79~0.95) 1.22 0.269 1.81 0.070 Phoenix-8 3.5 0.70 0.81 0.84(0.75~0.94) 0.36 0.551 多重感染患儿 54 PSS 3.5 0.89 0.91 0.90(0.80~1.00) 3.17 0.075 -0.06 0.951 Phoenix-8 3.5 0.89 0.80 0.90(0.82~0.99) 1.95 0.163 心血管系统疾病患儿 59 PSS 3.5 0.80 0.71 0.81(0.70~0.93) 0.35 0.552 1.08 0.283 Phoenix-8 4.5 0.80 0.77 0.79(0.67~0.92) 0.93 0.334 休克患儿 50 PSS 4.5 0.83 0.50 0.67(0.45~0.89) 1.59 0.207 1.61 0.107 Phoenix-8 4.5 0.83 0.39 0.61(0.37~0.84) 2.20 0.138 恶性肿瘤患儿 14 PSS 2.5 1.00 0.60 0.76(0.49~1.00) 2.65 0.265 1.64 0.100 Phoenix-8 2.5 1.00 0.10 0.69(0.39~0.99) 3.55 0.170 注:纳入患儿为符合传统标准,即2005年国际儿童脓毒症共识会议诊断标准的严重脓毒症患儿;PSS为菲尼克斯脓毒症评分,Phoenix-8为菲尼克斯-8器官功能障碍评分 -



下载: