留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大鲵皮肤黏液多糖对糖尿病小鼠全层皮肤缺损创面愈合的作用及其机制

苟伟茗 杨鹏 卢毅飞 张小容 秦一鸣 李景园 黄勇 张庆 罗高兴

苟伟茗, 杨鹏, 卢毅飞, 等. 大鲵皮肤黏液多糖对糖尿病小鼠全层皮肤缺损创面愈合的作用及其机制[J]. 中华烧伤与创面修复杂志, 2025, 41(2): 127-136. DOI: 10.3760/cma.j.cn501225-20240725-00280.
引用本文: 苟伟茗, 杨鹏, 卢毅飞, 等. 大鲵皮肤黏液多糖对糖尿病小鼠全层皮肤缺损创面愈合的作用及其机制[J]. 中华烧伤与创面修复杂志, 2025, 41(2): 127-136. DOI: 10.3760/cma.j.cn501225-20240725-00280.
Gou WM,Yang P,Lu YF,et al.Effect and mechanism of Andrias davidianus skin mucopolysaccharides on full-thickness skin defect wound healing in diabetic mice[J].Chin J Burns Wounds,2025,41(2):127-136.DOI: 10.3760/cma.j.cn501225-20240725-00280.
Citation: Gou WM,Yang P,Lu YF,et al.Effect and mechanism of Andrias davidianus skin mucopolysaccharides on full-thickness skin defect wound healing in diabetic mice[J].Chin J Burns Wounds,2025,41(2):127-136.DOI: 10.3760/cma.j.cn501225-20240725-00280.

大鲵皮肤黏液多糖对糖尿病小鼠全层皮肤缺损创面愈合的作用及其机制

doi: 10.3760/cma.j.cn501225-20240725-00280
基金项目: 

国家自然科学基金青年科学基金项目 82002045

详细信息
    通讯作者:

    罗高兴,Email:logxw@tmmu.edu.cn

Effect and mechanism of Andrias davidianus skin mucopolysaccharides on full-thickness skin defect wound healing in diabetic mice

Funds: 

Youth Science Foundation Project of National Natural Science Foundation of China 82002045

More Information
  • 摘要:   目的  探讨大鲵皮肤黏液多糖(以下简称大鲵黏多糖)对糖尿病小鼠全层皮肤缺损创面愈合的作用及其机制。  方法  该研究为实验研究。自制多糖含量为(70.0±0.3)%的大鲵黏多糖;采用细胞计数试剂盒-8检测人脐静脉内皮细胞(HUVEC)活力显示,大鲵黏多糖的最佳作用浓度为0.05 mg/mL。取HUVEC,按照随机数字表法(分组方法下同)分为空白对照组、血管内皮生长因子(VEGF)组、大鲵黏多糖组,分别添加常规培养基和含50 ng/mL VEGF、0.05 mg/mL大鲵黏多糖的培养基后置于低氧(氧气的体积分数为5%)和正常氧环境下培养。培养12 h后,观测HUVEC的成管长度。取人单核细胞白血病细胞,用佛波酯诱导分化为M0型巨噬细胞后分为空白对照组、内毒素/脂多糖(LPS)组、大鲵黏多糖组,分别采用常规培养基、含LPS培养基序贯常规培养基、含LPS培养基序贯含0.05 mg/mL的大鲵黏多糖培养基进行培养。培养48 h后,采用免疫荧光法检测细胞中CD86和CD206蛋白的表达(以相对荧光强度表示,下同)情况,采用实时荧光定量反转录PCR法检测细胞中精氨酸酶-1(Arg1)和CD206的mRNA表达情况。取18只8~10周龄雄性C57小鼠,采用链脲佐菌素联合高糖高脂饲料成功构建糖尿病模型,在其背部制作全层皮肤缺损创面并分为空白对照组、藻酸盐敷料组、大鲵黏多糖组,每组6只,分别应用生理盐水、藻酸盐敷料和大鲵黏多糖处理创面。伤后3、7、10、14 d,观测小鼠创面愈合情况并计算创面愈合率。伤后7 d,采用免疫荧光法观测小鼠创面组织中CD31及CD206蛋白的表达情况。伤后14 d,采用苏木精-伊红染色观测小鼠创面肉芽组织厚度。所有实验的样本数为3。  结果  在正常氧环境下培养12 h后,与空白对照组相比,VEGF组和大鲵黏多糖组HUVEC的成管长度均显著增长(q值分别为10.08、16.91,P<0.05)。在低氧环境下培养12 h后,与空白对照组相比,VEGF组和大鲵黏多糖组HUVEC的成管长度均显著增长(q值分别为11.61、16.91,P<0.05);与VEGF组相比,大鲵黏多糖组HUVEC的成管长度显著增长(q=5.30,P<0.05)。培养48 h后,大鲵黏多糖组M0型巨噬细胞中CD206蛋白的相对荧光强度为31.90±1.76,显著高于空白对照组的1.00±0.25和LPS组的2.21±0.42(q值分别为50.75、48.75,P值均<0.05);CD86蛋白的相对荧光强度为5.82±0.63,显著低于LPS组的53.73±4.61(q=30.90,P<0.05)。培养48 h后,大鲵黏多糖组M0型巨噬细胞中Arg1和CD206的mRNA表达量均显著高于空白对照组(q值分别为35.02、13.09,P<0.05)以及LPS组(q值分别为32.24和11.24,P<0.05)。伤后3 d,空白对照组、藻酸盐敷料组、大鲵黏多糖组小鼠创面愈合率两两比较,差异均无统计学意义(P>0.05)。与空白对照组相比,藻酸盐敷料组小鼠伤后10、14 d创面愈合率均显著升高(q值分别为11.76、12.50,P<0.05),大鲵黏多糖组小鼠伤后7、10、14 d创面愈合率均显著升高(q值分别为5.84、15.90、14.96,P<0.05)。与藻酸盐敷料组比较,大鲵黏多糖组小鼠伤后7、10 d创面愈合率均显著升高(q值分别为4.77、4.14,P<0.05)。伤后7 d,藻酸盐敷料组和大鲵黏多糖组小鼠创面组织中CD31蛋白的相对荧光强度均显著强于空白对照组(q值分别为7.63、16.85,P<0.05),大鲵黏多糖组小鼠创面组织中CD31蛋白的相对荧光强度显著强于藻酸盐敷料组(q=9.22,P<0.05)。伤后7 d,藻酸盐敷料组和大鲵黏多糖组小鼠创面组织中CD206蛋白的相对荧光强度均显著强于空白对照组(q值分别为8.76、29.36,P<0.05),大鲵黏多糖组小鼠创面组织中CD206蛋白的相对荧光强度显著强于藻酸盐敷料组(q=20.61,P<0.05)。伤后14 d,与空白对照组和藻酸盐敷料组相比,大鲵黏多糖组小鼠创面肉芽组织更厚。  结论  大鲵黏多糖可通过提高HUVEC成管能力以及诱导巨噬细胞向M2型极化,显著增强新生血管生成能力和优化免疫微环境,从而加速糖尿病小鼠全层皮肤缺损创面愈合。

     

  • 参考文献(40)

    [1] TottoliEM, DoratiR, GentaI, et al. Skin wound healing process and new emerging technologies for skin wound care and regeneration[J]. Pharmaceutics, 2020,12(8):735.DOI: 10.3390/pharmaceutics12080735.
    [2] 林崴仪, 戈成旺, 唐枭伟, 等. 阿克曼嗜黏液菌外膜蛋白1100促进糖尿病大鼠创面愈合[J].组织工程与重建外科杂志,2023,19(4):358-365. DOI: 10.3969/j.issn.1673-0364.2023.04.005.
    [3] 刘陈肖笑, 简扬, 张演基, 等. 基于抗生素骨水泥的糖尿病足溃疡治疗策略研究进展[J].组织工程与重建外科杂志,2023,19(6):591-596. DOI: 10.3969/j.issn.1673-0364.2023.06.014.
    [4] IshiharaJ, IshiharaA, StarkeRD, et al. The heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healing[J]. Blood, 2019,133(24):2559-2569. DOI: 10.1182/blood.2019000510.
    [5] DaiH, FanQ, WangC. Recent applications of immunomodulatory biomaterials for disease immuno-therapy[J]. Exploration (Beijing), 2022,2(6):20210157. DOI: 10.1002/EXP.20210157.
    [6] 易佳荣, 李泽楠, 谢慧清, 等. 人脐静脉内皮细胞外泌体对糖尿病兔创面愈合的作用及其机制[J]. 中华烧伤与创面修复杂志, 2022, 38(11):1023-1033. DOI: 10.3760/cma.j.cn501225-20220622-00254.
    [7] QueY, ShiJ, ZhangZ, et al. Ion cocktail therapy for myocardial infarction by synergistic regulation of both structural and electrical remodeling[J]. Exploration (Beijing), 2024,4(3):20230067. DOI: 10.1002/EXP.20230067.
    [8] WuX, HeW, MuX, et al. Macrophage polarization in diabetic wound healing[J/OL]. Burns Trauma, 2022,10:tkac051[2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/36601058/. DOI: 10.1093/burnst/tkac051.
    [9] LiS, YangP, DingX, et al. Puerarin improves diabetic wound healing via regulation of macrophage M2 polarization phenotype[J/OL]. Burns Trauma, 2022,10:tkac046[2024-07-25].https://pubmed.ncbi.nlm.nih.gov/36568527/. DOI: 10.1093/burnst/tkac046.
    [10] TokatlianT, CamC, SeguraT. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model[J]. Adv Healthc Mater, 2015,4(7):1084-1091. DOI: 10.1002/adhm.201400783.
    [11] HeH, XiaDL, ChenYP, et al. Evaluation of a two-stage antibacterial hydrogel dressing for healing in an infected diabetic wound[J]. J Biomed Mater Res B Appl Biomater, 2017,105(7):1808-1817. DOI: 10.1002/jbm.b.33543.
    [12] CuiW, GongC, LiuY, et al. Composite antibacterial hydrogels based on two natural products pullulan and ε-poly-l-lysine for burn wound healing[J]. Int J Biol Macromol, 2024,277(Pt 2):134208. DOI: 10.1016/j.ijbiomac.2024.134208.
    [13] LuYF, LiHS, WangJ, et al. Engineering bacteria-activated multifunctionalized hydrogel for promoting diabetic wound healing[J]. Adv Funct Mater, 2021, 31(48):2105749. DOI: 10.1002/adfm.202105749.
    [14] YuQ, SunH, YueZ, et al. Zwitterionic polysaccharide-based hydrogel dressing as a stem cell carrier to accelerate burn wound healing[J]. Adv Healthc Mater, 2023,12(7):e2202309. DOI: 10.1002/adhm.202202309.
    [15] YangP, LuY, GouW, et al. Glycosaminoglycans' ability to promote wound healing: from native living macromolecules to artificial biomaterials[J]. Adv Sci (Weinh), 2024,11(9):e2305918. DOI: 10.1002/advs.202305918.
    [16] Soriano-RuizJL, Gálvez-MartínP, López-RuizE, et al. Design and evaluation of mesenchymal stem cells seeded chitosan/glycosaminoglycans quaternary hydrogel scaffolds for wound healing applications[J]. Int J Pharm, 2019,570:118632. DOI: 10.1016/j.ijpharm.2019.118632.
    [17] DengJ, TangYY, ZhangQ, et al. A bioinspired medical adhesive derived from skinsecretion of andrias davidianus for wound healing[J]. Adv Funct Mater, 2019, 29(31):1809110. DOI: 10.1002/adfm.201809110.
    [18] NaghdiS, RezaeiM, TabarsaM, AbdollahiM. Extraction of sulfated polysaccharide from Skipjack tuna viscera using alcalase enzyme and rainbow trout visceral semi-purified alkaline proteases[J]. Sustain Chem Pharm, 2023, 32. DOI: 10.1016/j.scp.2023.101033.
    [19] AgbenorheviJK, KontogiorgosV. Polysaccharide determination in protein/polysaccharide mixtures for phase-diagram construction[J]. Carbohyd Polym, 2010, 81(4):849-854. DOI: 10.1016/j.carbpol.2010.03.056.
    [20] FengY, LiQ, WuD, et al. A macrophage-activating, injectable hydrogel to sequester endogenous growth factors for in situ angiogenesis[J]. Biomaterials, 2017,134:128-142. DOI: 10.1016/j.biomaterials.2017.04.042.
    [21] ZhouZ, DengT, TaoM, et al. Snail-inspired AFG/GelMA hydrogel accelerates diabetic wound healing via inflammatory cytokines suppression and macrophage polarization[J]. Biomaterials, 2023,299:122141. DOI: 10.1016/j.biomaterials.2023.122141.
    [22] RenY, AierkenA, ZhaoL, et al. hUC-MSCs lyophilized powder loaded polysaccharide ulvan driven functional hydrogel for chronic diabetic wound healing[J]. Carbohydr Polym, 2022,288:119404. DOI: 10.1016/j.carbpol.2022.119404.
    [23] WuH, LiF, ShaoW, et al. Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel[J]. ACS Cent Sci, 2019,5(3):477-485. DOI: 10.1021/acscentsci.8b00850.
    [24] BaekSO, JangU, ShinJ, et al. Shape memory alloy as an internal splint in a rat model of excisional wound healing[J]. Biomed Mater, 2021,16(2):025002. DOI: 10.1088/1748-605X/abda89.
    [25] ShaoZ, YinT, JiangJ, et al. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing[J]. Bioact Mater, 2023,20:561-573. DOI: 10.1016/j.bioactmat.2022.06.018.
    [26] LiuJ, QuM, WangC, et al. A dual-cross-linked hydrogel patch for promoting diabetic wound healing[J]. Small, 2022,18(17):e2106172. DOI: 10.1002/smll.202106172.
    [27] ArmstrongDG, BoultonA, BusSA. Diabetic foot ulcers and their recurrence[J]. N Engl J Med, 2017,376(24):2367-2375. DOI: 10.1056/NEJMra1615439.
    [28] LiuE, GaoH, ZhaoY, et al. The potential application of natural products in cutaneous wound healing: a review of preclinical evidence[J]. Front Pharmacol, 2022,13:900439. DOI: 10.3389/fphar.2022.900439.
    [29] 彭源, 卢毅飞, 邓君, 等. 氧化铜纳米酶对糖尿病小鼠全层皮肤缺损创面修复的作用及其机制[J]. 中华烧伤杂志, 2020, 36(12):1139-1148. DOI: 10.3760/cma.j.cn501120-20200929-00426.
    [30] DuH, LiS, LuJ, et al. Single-cell RNA-seq and bulk-seq identify RAB17 as a potential regulator of angiogenesis by human dermal microvascular endothelial cells in diabetic foot ulcers[J/OL]. Burns Trauma, 2023,11:tkad020[2024-07-25].https://pubmed.ncbi.nlm.nih.gov/37605780/. DOI: 10.1093/burnst/tkad020.
    [31] YueX, ZhaoS, QiuM, et al. Physical dual-network photothermal antibacterial multifunctional hydrogel adhesive for wound healing of drug-resistant bacterial infections synthesized from natural polysaccharides[J]. Carbohydr Polym, 2023,312:120831. DOI: 10.1016/j.carbpol.2023.120831.
    [32] ShepherdJ, SarkerP, RimmerS, et al. Hyperbranched poly(NIPAM) polymers modified with antibiotics for the reduction of bacterial burden in infected human tissue engineered skin[J]. Biomaterials, 2011,32(1):258-267. DOI: 10.1016/j.biomaterials.2010.08.084.
    [33] ZhangY, XuY, KongH, et al. Microneedle system for tissue engineering and regenerative medicine[J]. Exploration (Beijing), 2023,3(1):20210170. DOI: 10.1002/EXP.20210170.
    [34] ForbesSJ, RosenthalN. Preparing the ground for tissue regeneration: from mechanism to therapy[J]. Nat Med, 2014,20(8):857-869. DOI: 10.1038/nm.3653.
    [35] ShangS, ZhuangK, ChenJ, et al. A bioactive composite hydrogel dressing that promotes healing of both acute and chronic diabetic skin wounds[J]. Bioact Mater, 2024,34:298-310. DOI: 10.1016/j.bioactmat.2023.12.026.
    [36] MartinKE, GarcíaAJ. Macrophage phenotypes in tissue repair and the foreign body response: implications for biomaterial-based regenerative medicine strategies[J]. Acta Biomater, 2021,133:4-16. DOI: 10.1016/j.actbio.2021.03.038.
    [37] MantovaniA, BiswasSK, GaldieroMR, et al. Macrophage plasticity and polarization in tissue repair and remodelling[J]. J Pathol, 2013,229(2):176-185. DOI: 10.1002/path.4133.
    [38] ZhangX, SoontornworajitB, ZhangZ, et al. Enhanced loading and controlled release of antibiotics using nucleic acids as an antibiotic-binding effector in hydrogels[J]. Biomacromolecules, 2012,13(7):2202-2210. DOI: 10.1021/bm3006227.
    [39] 卢毅飞, 邓君, 王竞, 等. 乳酸乳球菌温敏水凝胶对糖尿病小鼠全层皮肤缺损创面愈合的影响及其机制[J]. 中华烧伤杂志, 2020, 36(12):1117-1129. DOI: 10.3760/cma.j.cn501120-20201004-00427.
    [40] DingX, YangC, LiY, et al. Reshaped commensal wound microbiome via topical application of Calvatia gigantea extract contributes to faster diabetic wound healing[J/OL]. Burns Trauma, 2024,12:tkae037[2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/39224840/. DOI: 10.1093/burnst/tkae037.
  • 图  1  大鲵皮肤黏液多糖的制作过程。1A.物理刺激大鲵皮肤,产生黏液;1B.冻干后的大鲵皮肤黏液;1C.经去脂处理后的大鲵皮肤黏液,呈白色粉末状;1D.透析后的大鲵皮肤黏液多糖粉末颜色微黄

    图  2  正常氧环境和低氧环境下培养12 h后3组人脐静脉内皮细胞的成管情况 倒置荧光显微镜×40。2A、2B、2C.分别为正常氧环境下空白对照组、VEGF组、大鲵黏多糖组细胞的成管情况,图2B和图2C的成管长度显著长于图2A;2D、2E、2F.分别为低氧环境下空白对照组、VEGF组、大鲵黏多糖组细胞的成管情况,图2E和图2F的成管长度显著长于图2D,图2F的成管长度明显长于图2E

    注:空白对照组、血管内皮细胞生长因子(VEGF)组、大鲵皮肤黏液多糖(简称大鲵黏多糖)组细胞分别采用常规培养基和含50 ng/mL VEGF、0.05 mg/mL大鲵黏多糖的培养基进行培养

    图  3  3组M0型人巨噬细胞培养48 h后表达CD86和CD206蛋白的情况 Alexa Fluor 594-Alexa Fluor 488-4′,6-二脒基-2-苯基吲哚×600。3A、3B、3C.分别为空白对照组、LPS组、大鲵黏多糖组表达CD86蛋白的情况,图3C的荧光强度显著弱于图3B;3D、3E、3F.分别为空白对照组、LPS组、大鲵黏多糖组表达CD206蛋白的情况,图3F的荧光强度显著强于图3D和图3E

    注:空白对照组、内毒素/脂多糖(LPS)组、大鲵皮肤黏液多糖(简称大鲵黏多糖)组分别采用常规培养基、含LPS培养基序贯常规培养基、含LPS培养基序贯含0.05 mg/mL的大鲵黏多糖培养基进行培养;CD86阳性染色为红色,CD206阳性染色为绿色,细胞核阳性染色为蓝色

    图  4  3组糖尿病小鼠伤后各时间点全层皮肤缺损创面愈合情况。4A、4B、4C.分别为空白对照组伤后7、10、14 d创面愈合情况,愈合速度缓慢;4D、4E、4F.分别为藻酸盐敷料组伤后7、10、14 d创面愈合情况,分别较图4A、4B、4C的创面面积小;4G、4H、4I.分别为大鲵黏多糖组伤后7、10、14 d创面愈合情况,分别较图4D、4E、4F的创面面积小,且愈合质量佳

    注:空白对照组、藻酸盐敷料组、大鲵皮肤黏液多糖(简称大鲵黏多糖)组小鼠创面分别用生理盐水、藻酸盐敷料和0.05 mg/mL大鲵黏多糖处理;橡胶夹板为参照物,其内径9 mm、外径11 mm

    图  5  3组糖尿病小鼠伤后7 d全层皮肤缺损创面组织中CD31、CD206蛋白的表达情况 Alexa Fluor 594-4′,6-二脒基-2-苯基吲哚×200。5A、5B、5C.分别为空白对照组、藻酸盐敷料组和大鲵黏多糖组创面组织中CD31表达情况,图5C的荧光强度显著强于图5A、5B;5D、5E、5F.分别为空白对照组、藻酸盐敷料组和大鲵黏多糖组创面组织中CD206蛋白表达情况,图5F的荧光强度显著强于图5D、5E

    注:空白对照组、藻酸盐敷料组、大鲵皮肤黏液多糖(简称大鲵黏多糖)组小鼠创面分别用生理盐水、藻酸盐敷料和大鲵黏多糖处理;CD31、CD206阳性染色均为红色,细胞核阳性染色为蓝色

    Table  1.   3组糖尿病小鼠伤后各时间点全层皮肤缺损创面愈合率比较(%,x¯±s

    组别鼠数(只)3 d7 d10 d14 d
    空白对照组38.5±1.715.6±3.826.3±4.352.6±12.3
    藻酸盐敷料组37.3±6.918.8±2.961.9±1.690.4±7.6
    大鲵黏多糖组311.4±5.633.3±5.374.4±6.897.8±1.5
    q10.401.0711.7612.50
    P10.9580.732<0.001<0.001
    q20.965.8415.9014.96
    P20.7770.001<0.001<0.001
    q31.364.774.142.46
    P30.6070.0060.0170.207
    注:空白对照组、藻酸盐敷料组、大鲵皮肤黏液多糖(简称大鲵黏多糖)组小鼠创面分别用生理盐水、藻酸盐敷料和0.05 mg/mL大鲵黏多糖处理;处理因素主效应,F=73.43,P<0.001;时间因素主效应,F=365.60,P<0.001;两者交互作用,F=17.29,P<0.001;q1值、P1值及q2值、P2值分别为藻酸盐敷料组、大鲵黏多糖组与空白对照组各时间点比较所得,q3值、P3值为大鲵黏多糖组与藻酸盐敷料组各时间点比较所得
    下载: 导出CSV
  • 苟伟茗.mp4
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  2149
  • HTML全文浏览量:  62
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-25

目录

    /

    返回文章
    返回