留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过表达生长停滞特异性蛋白6的骨髓间充质干细胞对糖尿病小鼠全层皮肤缺损创面的影响及其机制

刘培 王超 魏绮键 李玉腾 崔丽君 王昌钏 张帆 马玲 田轩

刘培, 王超, 魏绮键, 等. 过表达生长停滞特异性蛋白6的骨髓间充质干细胞对糖尿病小鼠全层皮肤缺损创面的影响及其机制[J]. 中华烧伤与创面修复杂志, 2025, 41(2): 145-154. DOI: 10.3760/cma.j.cn501225-20241024-00409.
引用本文: 刘培, 王超, 魏绮键, 等. 过表达生长停滞特异性蛋白6的骨髓间充质干细胞对糖尿病小鼠全层皮肤缺损创面的影响及其机制[J]. 中华烧伤与创面修复杂志, 2025, 41(2): 145-154. DOI: 10.3760/cma.j.cn501225-20241024-00409.
Liu P,Wang C,Wei QJ,et al.Influence and mechanism of bone marrow mesenchymal stem cells overexpressing growth arrest specific 6 on full-thickness skin defect wounds in diabetic mice[J].Chin J Burns Wounds,2025,41(2):145-154.DOI: 10.3760/cma.j.cn501225-20241024-00409.
Citation: Liu P,Wang C,Wei QJ,et al.Influence and mechanism of bone marrow mesenchymal stem cells overexpressing growth arrest specific 6 on full-thickness skin defect wounds in diabetic mice[J].Chin J Burns Wounds,2025,41(2):145-154.DOI: 10.3760/cma.j.cn501225-20241024-00409.

过表达生长停滞特异性蛋白6的骨髓间充质干细胞对糖尿病小鼠全层皮肤缺损创面的影响及其机制

doi: 10.3760/cma.j.cn501225-20241024-00409
基金项目: 

国家自然科学基金青年科学基金项目 82400767

山东省自然科学基金青年基金项目 ZR2023QH243

详细信息
    通讯作者:

    田轩,Email:tianxuan0530@foxmail.com

Influence and mechanism of bone marrow mesenchymal stem cells overexpressing growth arrest specific 6 on full-thickness skin defect wounds in diabetic mice

Funds: 

Youth Science Fund Program of National Natural Science Foundation of China 82400767

Youth Fund Program of Shandong Provincial Natural Science Foundation ZR2023QH243

More Information
  • 摘要:   目的  探讨过表达生长停滞特异性蛋白6(GAS6)的骨髓间充质干细胞(BMSC),即GAS6/BMSC对糖尿病小鼠全层皮肤缺损创面的影响及其机制。  方法  该研究为实验研究。将12只8周龄雄性C57BL/6J小鼠按照随机数字表法分为仅造成全层皮肤缺损的对照创面组与造成糖尿病全层皮肤缺损的糖尿病创面组,每组6只小鼠。伤后3、7、14、21 d,计算创面愈合率。伤后21 d,收集创面组织标本,行苏木精-伊红染色观察组织病理学情况;行Masson染色检测胶原沉积情况;行免疫组织化学染色检测增殖细胞核抗原(PCNA)阳性细胞数和CD31阳性细胞数,分别表示细胞增殖情况和毛细血管密度;行免疫荧光染色检测F4/80和髓过氧化物酶(MPO)双阳性细胞数,表示胞葬情况。取2只4周龄雄性C57BL/6J小鼠,提取BMSC,通过腺病毒转染构建GAS6/BMSC并成功鉴定。取18只8周龄雄性C57BL/6J小鼠制成糖尿病全层皮肤缺损创面模型后,按照随机数字表法将其分为磷酸盐缓冲液(PBS)组、BMSC组和GAS6/BMSC组(每组6只小鼠),伤后即刻于3组小鼠创面局部分别注射PBS、BMSC单细胞悬液、GAS6/BMSC单细胞悬液,于前述实验相同时间点计算创面愈合率、检测细胞增殖情况和毛细血管密度及胞葬情况。  结果  伤后3、7、14、21 d,糖尿病创面组小鼠创面愈合率均显著低于对照创面组(t值分别为7.99、8.62、9.80、5.85,P<0.05)。与对照创面组相比,糖尿病创面组小鼠伤后21 d的创面组织中大量炎症细胞浸润,胶原沉积减少。伤后21 d,糖尿病创面组小鼠创面组织中PCNA阳性细胞数和CD31阳性细胞数均显著少于对照创面组(t值分别为6.61、5.38,P<0.05)。伤后21 d,糖尿病创面组小鼠创面组织中F4/80和MPO双阳性细胞数为(3.3±0.8)个,较对照创面组的(12.7±1.8)个显著减少(t=11.00,P<0.05)。伤后14、21 d,BMSC组小鼠创面愈合率均显著高于PBS组(P<0.05);伤后3、7、14、21 d,GAS6/BMSC组小鼠创面愈合率均显著高于BMSC组(P<0.05)。伤后21 d,BMSC组小鼠创面组织中PCNA阳性细胞数显著多于PBS组(P<0.05),GAS6/BMSC组小鼠创面组织中PCNA阳性细胞数与CD31阳性细胞数均显著多于BMSC组(P<0.05)。伤后21 d,BMSC组小鼠创面组织中F4/80和MPO双阳性细胞数为(4.2±1.2)个,与PBS组的(3.5±1.1)个相近(P>0.05);GAS6/BMSC组小鼠创面组织中F4/80和MPO双阳性细胞数为(8.2±1.2)个,显著多于BMSC组(P<0.05)。  结论  糖尿病小鼠全层皮肤缺损创面中存在巨噬细胞的胞葬功能障碍,而GAS6/BMSC可通过恢复巨噬细胞的胞葬作用促进创面愈合。

     

  • 参考文献(41)

    [1] McDermottK,FangM,BoultonAJM,et al.Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers[J].Diabetes Care,2023,46(1):209-221.DOI: 10.2337/dci22-0043.
    [2] 阮琼芳,章思语,席毛毛,等.糖尿病足患者创缘皮肤组织中成纤维细胞与角质形成细胞的相互作用及其机制[J].中华烧伤与创面修复杂志,2024,40(8):762-771.DOI: 10.3760/cma.j.cn501225-20240221-00067.
    [3] ChenT,SongP,HeM,et al.Sphingosine-1-phosphate derived from PRP-Exos promotes angiogenesis in diabetic wound healing via the S1PR1/AKT/FN1 signalling pathway[J/OL].Burns Trauma,2023,11:tkad003[2024-10-24].https://pubmed.ncbi.nlm.nih.gov/37251708/.DOI: 10.1093/burnst/tkad003.
    [4] ShepherdHM,GauthierJM,TeradaY,et al.Updated views on neutrophil responses in ischemia-reperfusion injury[J].Transplantation,2022,106(12):2314-2324.DOI: 10.1097/TP.0000000000004221.
    [5] KaltenmeierC,YazdaniHO,HanduS,et al.The role of neutrophils as a driver in hepatic ischemia-reperfusion injury and cancer growth[J].Front Immunol,2022,13:887565.DOI: 10.3389/fimmu.2022.887565.
    [6] Boada-RomeroE,MartinezJ,HeckmannBL,et al.The clearance of dead cells by efferocytosis[J].Nat Rev Mol Cell Biol,2020,21(7):398-414.DOI: 10.1038/s41580-020-0232-1.
    [7] MehrotraP,RavichandranKS.Drugging the efferocytosis process: concepts and opportunities[J].Nat Rev Drug Discov,2022,21(8):601-620.DOI: 10.1038/s41573-022-00470-y.
    [8] WangJ,HossainM,ThanabalasuriarA,et al.Visualizing the function and fate of neutrophils in sterile injury and repair[J].Science,2017,358(6359):111-116.DOI: 10.1126/science.aam9690.
    [9] SakuragiT,NagataS.Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases[J].Nat Rev Mol Cell Biol,2023,24(8):576-596.DOI: 10.1038/s41580-023-00604-z.
    [10] Zdżalik-BieleckaD,PoświataA,KozikK,et al. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion[J].Proc Natl Acad Sci U S A,2021,118(28):e2024596118.DOI: 10.1073/pnas.2024596118.
    [11] NepalS,TiruppathiC,TsukasakiY,et al.STAT6 induces expression of Gas6 in macrophages to clear apoptotic neutrophils and resolve inflammation[J].Proc Natl Acad Sci U S A,2019,116(33):16513-16518.DOI: 10.1073/pnas.1821601116.
    [12] TangQ,DongC,SunQ.Immune response associated with ischemia and reperfusion injury during organ transplantation[J].Inflamm Res,2022,71(12):1463-1476.DOI: 10.1007/s00011-022-01651-6.
    [13] YaoZ,QiW,ZhangH,et al.Down-regulated GAS6 impairs synovial macrophage efferocytosis and promotes obesity-associated osteoarthritis[J].Elife,2023,12:e83069.DOI: 10.7554/eLife.83069.
    [14] KalluriR,LeBleuVS.The biology, function, and biomedical applications of exosomes[J].Science,2020,367(6478):eaau6977.DOI: 10.1126/science.aau6977.
    [15] PiL,YangL,FangBR,et al.Exosomal microRNA-125a-3p from human adipose-derived mesenchymal stem cells promotes angiogenesis of wound healing through inhibiting PTEN[J].Mol Cell Biochem,2022,477(1):115-127.DOI: 10.1007/s11010-021-04251-w.
    [16] ChristB,BrücknerS,WinklerS.The therapeutic promise of mesenchymal stem cells for liver restoration[J].Trends Mol Med,2015,21(11):673-686.DOI: 10.1016/j.molmed.2015.09.004.
    [17] MeloniM,IzzoV,GiuratoL,et al.Prevalence, clinical aspects and outcomes in a large cohort of persons with diabetic foot disease: comparison between neuropathic and ischemic ulcers[J].J Clin Med,2020,9(6):1780.DOI: 10.3390/jcm9061780.
    [18] DoranAC,YurdagulAJr,TabasI.Efferocytosis in health and disease[J].Nat Rev Immunol,2020,20(4):254-267.DOI: 10.1038/s41577-019-0240-6.
    [19] WangY,WangJ,ZhangJ,et al.Stiffness sensing via Piezo1 enhances macrophage efferocytosis and promotes the resolution of liver fibrosis[J].Sci Adv,2024,10(23):eadj3289.DOI: 10.1126/sciadv.adj3289.
    [20] RaziS,Yaghmoorian KhojiniJ,KargarijamF,et al. Macrophage efferocytosis in health and disease[J].Cell Biochem Funct,2023,41(2):152-165.DOI: 10.1002/cbf.3780.
    [21] SchilperoortM,NgaiD,SukkaSR,et al.The role of efferocytosis-fueled macrophage metabolism in the resolution of inflammation[J].Immunol Rev,2023,319(1):65-80.DOI: 10.1111/imr.13214.
    [22] LiW,TeradaY,TyurinaYY,et al.Necroptosis triggers spatially restricted neutrophil-mediated vascular damage during lung ischemia reperfusion injury[J].Proc Natl Acad Sci U S A,2022,119(10):e2111537119.DOI: 10.1073/pnas.2111537119.
    [23] PoonIKH,RavichandranKS.Targeting efferocytosis in inflammaging[J].Annu Rev Pharmacol Toxicol,2024,64:339-357.DOI: 10.1146/annurev-pharmtox-032723-110507.
    [24] SchilperoortM,NgaiD,KaterelosM,et al.PFKFB2-mediated glycolysis promotes lactate-driven continual efferocytosis by macrophages[J].Nat Metab,2023,5(3):431-444.DOI: 10.1038/s42255-023-00736-8.
    [25] JunJI,KimKH,LauLF.The matricellular protein CCN1 mediates neutrophil efferocytosis in cutaneous wound healing[J].Nat Commun,2015,6:7386.DOI: 10.1038/ncomms8386.
    [26] GrégoireM,UhelF,LesouhaitierM,et al.Impaired efferocytosis and neutrophil extracellular trap clearance by macrophages in ARDS[J].Eur Respir J,2018,52(2):1702590.DOI: 10.1183/13993003.02590-2017.
    [27] 邢楠,霍然,王海涛,等.脂肪干细胞基质胶促进创面愈合的研究进展[J].中华烧伤与创面修复杂志,2023,39(1):81-84.DOI: 10.3760/cma.j.cn501120-20211204-00404.
    [28] 付文,王向臣,王延桂,等.脂肪源性间充质干细胞外泌体在大鼠全层皮肤缺损创面愈合中的机制研究[J].组织工程与重建外科杂志,2023,19(4):342-351,379.DOI: 10.3969/j.issn.1673-0364.2023.04.003.
    [29] SunD,CaoH,YangL,et al.MiR-200b in heme oxygenase-1-modified bone marrow mesenchymal stem cell-derived exosomes alleviates inflammatory injury of intestinal epithelial cells by targeting high mobility group box 3[J].Cell Death Dis,2020,11(6):480.DOI: 10.1038/s41419-020-2685-8.
    [30] 丁健,宋亮,阮柏,等.间充质干细胞及其修饰体在肝纤维化治疗中的作用研究进展[J].解放军医学杂志,2023,48(5):609-614.DOI: 10.11855/j.issn.0577-7402.2023.05.0609.
    [31] 纪鸥洋,方均燕,宋阿会,等.间充质干细胞外泌体对腹膜间皮细胞高糖损伤的作用研究[J].组织工程与重建外科杂志,2022,18(4):294-299.DOI: 10.3969/j.issn.1673-0364.2022.04.002.
    [32] WuL,CaoH,TianX,et al.Bone marrow mesenchymal stem cells modified with heme oxygenase-1 alleviate rejection of donation after circulatory death liver transplantation by inhibiting dendritic cell maturation in rats[J].Int Immunopharmacol,2022,107:108643.DOI: 10.1016/j.intimp.2022.108643.
    [33] YuanYG,WangJL,ZhangYX,et al. Biogenesis, composition and potential therapeutic applications of mesenchymal stem cells derived exosomes in various diseases[J].Int J Nanomedicine,2023,18:3177-3210.DOI: 10.2147/IJN.S407029.
    [34] FanH,AiR,MuS,et al.MiR-19a suppresses ferroptosis of colorectal cancer cells by targeting IREB2[J].Bioengineered,2022,13(5):12021-12029.DOI: 10.1080/21655979.2022.2054194.
    [35] DongJ,WuB,TianW.Human adipose tissue-derived small extracellular vesicles promote soft tissue repair through modulating M1-to-M2 polarization of macrophages[J].Stem Cell Res Ther,2023,14(1):67.DOI: 10.1186/s13287-023-03306-7.
    [36] 胡佳,张海霞,苏婉露,等.间充质干细胞对2型糖尿病小鼠糖尿病肾病进展的影响及其机制[J].解放军医学杂志,2023,48(4):383-393.DOI: 10.11855/j.issn.0577-7402.2023.04.0383.
    [37] TianX,YanX,ZangN,et al.Injectable thermosensitive selenium-containing hydrogel as mesenchymal stem cell carrier to improve treatment efficiency in limb ischemia[J].Mater Today Bio,2024,25:100967.DOI: 10.1016/j.mtbio.2024.100967.
    [38] TianX,WuL,LiX,et al.Exosomes derived from bone marrow mesenchymal stem cells alleviate biliary ischemia reperfusion injury in fatty liver transplantation by inhibiting ferroptosis[J].Mol Cell Biochem,2024,479(4):881-894.DOI: 10.1007/s11010-023-04770-8.
    [39] 孙皓,蒲胤瑄,刘佳林,等.过表达miR-378a修饰骨髓间充质干细胞复合胶原蛋白海绵支架对大鼠股骨缺损的修复作用[J].解放军医学杂志,2023,48(2):175-182.DOI: 10.11855/j.issn.0577-7402.2023.02.0175.
    [40] 陈瑞婧,冯韬锦,程实,等.3D培养人脐带间充质干细胞来源的外泌体对成骨细胞分化的作用[J].解放军医学杂志,2023,48(4):411-419.DOI: 10.11855/j.issn.0577-7402.2023.04.0411.
    [41] WuL,TianX,ZuoH,et al.miR-124-3p delivered by exosomes from heme oxygenase-1 modified bone marrow mesenchymal stem cells inhibits ferroptosis to attenuate ischemia-reperfusion injury in steatotic grafts[J].J Nanobiotechnology,2022,20(1):196.DOI: 10.1186/s12951-022-01407-8.
  • 图  1  2组小鼠全层皮肤缺损创面伤后各时间点面积情况。1A、1B.分别为对照创面组与糖尿病创面组伤后0 d(即刻)创面情况,创面面积一致;1C、1D.分别为对照创面组与糖尿病创面组伤后7 d创面情况,图1C创面面积显著小于图1D;1E、1F.分别为对照创面组与糖尿病创面组伤后14 d创面情况,图1E创面面积显著小于图1F;1G、1H.分别为对照创面组与糖尿病创面组伤后21 d创面情况,图1G创面面积显著小于图1H

    注:糖尿病创面组小鼠制成糖尿病模型后致伤,对照创面组小鼠单纯致伤

    图  2  2组小鼠全层皮肤缺损创面伤后21 d组织中细胞增殖情况、毛细血管密度和胞葬情况。2A、2B.分别为糖尿病创面组与对照创面组PCNA阳性细胞(棕褐色)情况,图2A中阳性细胞数显著少于图2B 二氨基联苯胺-苏木精×200;2C、2D.分别为糖尿病创面组与对照创面组CD31阳性细胞(棕褐色)情况,图2C中阳性细胞数显著少于图2D 二氨基联苯胺-苏木精×200;2E、2F.分别为糖尿病创面组与对照创面组F4/80和MPO双阳性细胞(黄色)情况,图2E中双阳性细胞数显著少于图2F Alexa Fluor 488-Cy3-4',6-二脒基-2-苯基吲哚×200

    注:糖尿病创面组小鼠制成糖尿病模型后致伤,对照创面组小鼠单纯致伤;分别以增殖细胞核抗原(PCNA)阳性细胞数、CD31阳性细胞数、F4/80(阳性为红色)和髓过氧化物酶(MPO,阳性为绿色)双阳性细胞数表示细胞增殖情况、毛细血管密度、胞葬情况

    图  3  过表达GAS6的小鼠BMSC的鉴定。3A.培养48 h,GAS6/BMSC形态为长梭形 倒置荧光显微镜(明场通道)×200;3B.蛋白质印迹法检测显示GAS6/BMSC中GAS6蛋白表达水平显著高于作为对照的BMSC;3C.成脂诱导15 d后,GAS6/BMSC内可见脂滴(红色) 油红O×200;3D.成骨诱导15 d后,GAS6/BMSC内可见钙盐结节(红色) 茜素红S×200

    注:GAS6为生长停滞特异性蛋白6,BMSC为骨髓间充质干细胞,GAS6/BMSC为过表达GAS6的BMSC

    图  4  3组糖尿病小鼠全层皮肤缺损创面伤后各时间点面积情况。4A、4B、4C.分别为PBS组、BMSC组与GAS6/BMSC组伤后0 d(即刻)创面情况,创面面积一致;4D、4E、4F.分别为PBS组、BMSC组与GAS6/BMSC组伤后7 d创面情况,图4D与图4E创面面积相近,图4F创面面积显著小于图4E;4G、4H、4I.分别为PBS组、BMSC组与GAS6/BMSC组伤后14 d创面情况,图4H创面面积显著小于图4G,图4I创面面积显著小于图4H;4J、4K、4L.分别为PBS组、BMSC组与GAS6/BMSC组伤后21 d的创面情况,图4K创面面积显著小于图4J,图4L创面面积显著小于图4K

    注:磷酸盐缓冲液(PBS)组、骨髓间充质干细胞(BMSC)组与过表达生长停滞特异性蛋白6的BMSC(GAS6/BMSC)组小鼠创面局部分别注射PBS、BMSC单细胞悬液、GAS6/BMSC单细胞悬液

    图  5  3组糖尿病小鼠全层皮肤缺损创面伤后21 d组织中细胞增殖情况、毛细血管密度和胞葬情况。5A、5B、5C.分别为PBS组、BMSC组与GAS6/BMSC组PCNA阳性细胞(棕褐色)情况,图5B中阳性细胞数显著多于图5A,图5C中阳性细胞数显著多于图5B;5D、5E、5F.分别为PBS组、BMSC组与GAS6/BMSC组CD31阳性细胞(棕褐色)情况,图5E与图5D中阳性细胞数相近,图5F中阳性细胞数显著多于图5E;5G、5H、5I.分别为PBS组、BMSC组与GAS6/BMSC组F4/80和MPO双阳性细胞(黄色)情况,图5G与图5H中双阳性细胞数相近,图5I中双阳性细胞数显著多于图5H

    注:磷酸盐缓冲液(PBS)组、骨髓间充质干细胞(BMSC)组与过表达生长停滞特异性蛋白6的BMSC(GAS6/BMSC)组小鼠创面局部分别注射PBS、BMSC单细胞悬液、GAS6/BMSC单细胞悬液;分别以增殖细胞核抗原(PCNA)阳性细胞数、CD31阳性细胞数、F4/80(阳性为红色)和髓过氧化物酶(MPO,阳性为绿色)双阳性细胞数表示细胞增殖情况、毛细血管密度、胞葬情况

    Table  1.   2组小鼠全层皮肤缺损创面伤后各时间点愈合率比较(%,x¯±s

    组别样本数3 d7 d14 d21 d
    对照创面组631.7±4.848.3±5.586.8±3.492.0±4.1
    糖尿病创面组610.8±4.224.3±4.065.8±4.079.0±3.6
    t7.998.629.805.85
    P<0.001<0.001<0.001<0.001
    注:糖尿病创面组小鼠制成糖尿病模型后致伤,对照创面组小鼠单纯致伤;处理因素主效应,F=263.80,P<0.001;时间因素主效应,F=1 090.00,P<0.001;两者交互作用,F=19.47,P<0.001
    下载: 导出CSV

    Table  2.   3组糖尿病小鼠全层皮肤缺损创面伤后各时间点愈合率比较(%,x¯±s

    组别样本数3 d7 d14 d21 d
    PBS组612.8±5.827.2±4.163.0±3.474.5±4.3
    BMSC组612.3±3.629.3±5.968.3±2.280.2±3.2
    GAS6/BMSC组631.7±4.449.7±6.484.0±2.992.0±2.6
    F33.3830.1886.9540.69
    P<0.001<0.001<0.001<0.001
    P10.9800.7800.0150.030
    P2<0.001<0.001<0.001<0.001
    注:磷酸盐缓冲液(PBS)组、骨髓间充质干细胞(BMSC)组与过表达生长停滞特异性蛋白6的BMSC(GAS6/BMSC)组小鼠创面局部分别注射PBS、BMSC单细胞悬液、GAS6/BMSC单细胞悬液;处理因素主效应,F=197.30,P<0.001;时间因素主效应,F=1 399.00,P<0.001;两者交互作用,F=10.41,P<0.001;F值、P值为各时间点组间总体比较所得,P1值为BMSC组与PBS组各时间点比较所得,P2值为GAS6/BMSC组与BMSC组各时间点比较所得
    下载: 导出CSV
  • 刘培-视频.mp4
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1107
  • HTML全文浏览量:  87
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-24

目录

    /

    返回文章
    返回