留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纳米生物材料技术的脓毒症治疗新策略

姚咏明 张卉 董宁

姚咏明, 张卉, 董宁. 基于纳米生物材料技术的脓毒症治疗新策略[J]. 中华烧伤与创面修复杂志, 2025, 41(3): 206-211. DOI: 10.3760/cma.j.cn501225-20241122-00458.
引用本文: 姚咏明, 张卉, 董宁. 基于纳米生物材料技术的脓毒症治疗新策略[J]. 中华烧伤与创面修复杂志, 2025, 41(3): 206-211. DOI: 10.3760/cma.j.cn501225-20241122-00458.
Yao YM,Zhang H,Dong N.New strategy for sepsis treatment based on nanobiomaterial technology[J].Chin J Burns Wounds,2025,41(3):206-211.DOI: 10.3760/cma.j.cn501225-20241122-00458.
Citation: Yao YM,Zhang H,Dong N.New strategy for sepsis treatment based on nanobiomaterial technology[J].Chin J Burns Wounds,2025,41(3):206-211.DOI: 10.3760/cma.j.cn501225-20241122-00458.

基于纳米生物材料技术的脓毒症治疗新策略

doi: 10.3760/cma.j.cn501225-20241122-00458
基金项目: 

国家重点研发计划 2022YFA1104604

国家自然科学基金重点项目 82241062

国家自然科学基金面上项目 82472194

详细信息
    通讯作者:

    姚咏明,Email:c_ff@sina.com

New strategy for sepsis treatment based on nanobiomaterial technology

Funds: 

National Key Research and Development Program of China 2022YFA1104604

Key Program of National Natural Science Foundation of China 82241062

General Program of National Natural Science Foundation of China 82472194

More Information
  • 摘要: 脓毒症的病理生理机制复杂,主要涉及过度炎症反应和免疫功能紊乱。纳米生物材料技术的发展给脓毒症治疗带来了全新选择。该文从抗菌、抗炎、靶向调控免疫细胞功能、多靶向联合调控等方面论述了纳米生物材料在脓毒症治疗中的应用现状和潜力,为未来开发基于纳米生物材料的脓毒症治疗策略开辟新方向。

     

  • 参考文献(40)

    [1] IqbalS,SohailM,FangS,et al.Biomaterials evolution: from inert to instructive[J].Biomater Sci,2023,11(18):6109-6115.DOI: 10.1039/d3bm00322a.
    [2] MarinE,BoschettoF,PezzottiG.Biomaterials and biocompatibility: an historical overview[J].J Biomed Mater Res A,2020,108(8):1617-1633.DOI: 10.1002/jbm.a.36930.
    [3] 严珍珍,王雨翔,张停琳,等.负载银纳米颗粒小球藻的明胶/聚乙二醇水凝胶的性能及其对小鼠全层皮肤缺损感染创面愈合的作用[J].中华烧伤与创面修复杂志,2024,40(1):33-42.DOI: 10.3760/cma.j.cn501225-20231020-00126.
    [4] 潘泽平,石云龙,袁志强,等.负载锌离子的复合水凝胶对糖尿病小鼠全层皮肤缺损感染创面的作用及机制[J].中华烧伤与创面修复杂志,2024,40(9):866-875.DOI: 10.3760/cma.j.cn501225-20231120-00200.
    [5] SinhaA,SimnaniFZ,SinghD,et al.The translational paradigm of nanobiomaterials: biological chemistry to modern applications[J].Mater Today Bio,2022,17:100463.DOI: 10.1016/j.mtbio.2022.100463.
    [6] PelazB,AlexiouC,Alvarez-PueblaRA,et al.Diverse applications of nanomedicine[J].ACS Nano,2017,11(3):2313-2381.DOI: 10.1021/acsnano.6b06040.
    [7] RahmatiM,SilvaEA,ReselandJE,et al.Biological responses to physicochemical properties of biomaterial surface[J].Chem Soc Rev,2020,49(15):5178-5224.DOI: 10.1039/d0cs00103a.
    [8] ZhangCY,GaoJ,WangZ.Bioresponsive nanoparticles targeted to infectious microenvironments for sepsis management[J].Adv Mater,2018,30(43):e1803618.DOI: 10.1002/adma.201803618.
    [9] YangR,ChenL,WangY,et al.Tumor microenvironment responsive metal nanoparticles in cancer immunotherapy[J].Front Immunol,2023,14:1237361.DOI: 10.3389/fimmu.2023.1237361.
    [10] YangY,DingY,FanB,et al.Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis[J].J Control Release,2020,321:463-474.DOI: 10.1016/j.jconrel.2020.02.030.
    [11] MitchellMJ,BillingsleyMM,HaleyRM,et al.Engineering precision nanoparticles for drug delivery[J].Nat Rev Drug Discov,2021,20(2):101-124.DOI: 10.1038/s41573-020-0090-8.
    [12] NowotnickAG,XiZ,JinZ,et al.Antimicrobial biomaterials based on physical and physicochemical action[J].Adv Healthc Mater,2024,13(32):e2402001.DOI: 10.1002/adhm.202402001.
    [13] AbdelkaderA,El-MokhtarMA,AbdelkaderO,et al.Ultrahigh antibacterial efficacy of meropenem-loaded chitosan nanoparticles in a septic animal model[J].Carbohydr Polym,2017,174:1041-1050.DOI: 10.1016/j.carbpol.2017.07.030.
    [14] HussainS,JooJ,KangJ,et al.Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy[J].Nat Biomed Eng,2018,2(2):95-103.DOI: 10.1038/s41551-017-0187-5.
    [15] RamamurthyR,MehtaCH,NayakUY.Structurally nanoengineered antimicrobial peptide polymers: design, synthesis and biomedical applications[J].World J Microbiol Biotechnol,2021,37(8):139.DOI: 10.1007/s11274-021-03109-z.
    [16] LiuJ,KangR,TangD.Lipopolysaccharide delivery systems in innate immunity[J].Trends Immunol,2024,45(4):274-287.DOI: 10.1016/j.it.2024.02.003.
    [17] FoitL,ThaxtonCS.Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4[J].Biomaterials,2016,100:67-75.DOI: 10.1016/j.biomaterials.2016.05.021.
    [18] ThamphiwatanaS,AngsantikulP,EscajadilloT,et al.Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management[J].Proc Natl Acad Sci U S A,2017,114(43):11488-11493.DOI: 10.1073/pnas.1714267114.
    [19] CheJ,SunL,ShanJ,et al.Artificial lipids and macrophage membranes coassembled biomimetic nanovesicles for antibacterial treatment[J].Small,2022,18(26):e2201280.DOI: 10.1002/smll.202201280.
    [20] LuC,ZhengJ,DingY,et al.Cepharanthine loaded nanoparticles coated with macrophage membranes for lung inflammation therapy[J].Drug Deliv,2021,28(1):2582-2593.DOI: 10.1080/10717544.2021.2009936.
    [21] BrazaMS,van LeentMMT,LameijerM,et al.Inhibiting inflammation with myeloid cell-specific nanobiologics promotes organ transplant acceptance[J].Immunity,2018,49(5):819-828.e6.DOI: 10.1016/j.immuni.2018.09.008.
    [22] SongC,XuJ,GaoC,et al.Nanomaterials targeting macrophages in sepsis: a promising approach for sepsis management[J].Front Immunol,2022,13:1026173.DOI: 10.3389/fimmu.2022.1026173.
    [23] TaratummaratS,SangphechN,VuCTB,et al.Gold nanoparticles attenuates bacterial sepsis in cecal ligation and puncture mouse model through the induction of M2 macrophage polarization[J].BMC Microbiol,2018,18(1):85.DOI: 10.1186/s12866-018-1227-3.
    [24] YangH,FungSY,XuS,et al.Amino acid-dependent attenuation of Toll-like receptor signaling by peptide-gold nanoparticle hybrids[J].ACS Nano,2015,9(7):6774-6784.DOI: 10.1021/nn505634h.
    [25] XuY,LiY,LiuX,et al.SPIONs enhances IL-10-producing macrophages to relieve sepsis via Cav1-Notch1/HES1-mediated autophagy[J].Int J Nanomedicine,2019,14:6779-6797.DOI: 10.2147/IJN.S215055.
    [26] TangC,JingW,HanK,et al.mRNA-laden lipid-nanoparticle-enabled in situ CAR-macrophage engineering for the eradication of multidrug-resistant bacteria in a sepsis mouse model[J].ACS Nano,2024,18(3):2261-2278.DOI: 10.1021/acsnano.3c10109.
    [27] WeiY,KimJ,ErnitsH,et al.The septic neutrophil-friend or foe[J].Shock,2021,55(2):147-155.DOI: 10.1097/SHK.0000000000001620.
    [28] ZhangCY,DongX,GaoJ,et al.Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke[J].Sci Adv,2019,5(11):eaax7964.DOI: 10.1126/sciadv.aax7964.
    [29] ChangYT,LinCY,ChenCJ,et al.Neutrophil-targeted combinatorial nanosystems for suppressing bacteremia-associated hyperinflammation and MRSA infection to improve survival rates[J].Acta Biomater,2024,174:331-344.DOI: 10.1016/j.actbio.2023.11.040.
    [30] 姚咏明,张卉,吴瑶.靶向树突状细胞的脓毒症免疫调理新策略[J].中华烧伤与创面修复杂志,2023,39(7):606-611.DOI: 10.3760/cma.j.cn501225-20230321-00087.
    [31] 朱富军,童亚林,盛志勇,等.生物材料对树突状细胞免疫功能影响及其调控途径[J].生理科学进展,2018,49(6):411-417.DOI: 10.3969/j.issn.0559-7765.2018.06.002.
    [32] IshiiM,KatoC,HakamataA,et al.Targeting with oligomannose-coated liposomes promotes maturation and splenic trafficking of dendritic cells in the peritoneal cavity[J].Int Immunopharmacol,2011,11(2):164-171.DOI: 10.1016/j.intimp.2010.11.011.
    [33] CruzLJ,RosaliaRA,KleinovinkJW,et al.Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8+ T cell response: a comparative study[J].J Control Release,2014,192:209-218.DOI: 10.1016/j.jconrel.2014.07.040.
    [34] DongH,LiQ,ZhangY,et al.Biomaterials facilitating dendritic cell-mediated cancer immunotherapy[J].Adv Sci (Weinh),2023,10(18):e2301339.DOI: 10.1002/advs.202301339.
    [35] Eslami-KalijiF,SarafbidabadM,RajadasJ,et al.Dendritic cells as targets for biomaterial-based immunomodulation[J].ACS Biomater Sci Eng,2020,6(5):2726-2739.DOI: 10.1021/acsbiomaterials.9b01987.
    [36] HuangL,HuangZ,ZhangY,et al.Advances in targeted delivery of mRNA into immune cells for enhanced cancer therapy[J].Theranostics,2024,14(14):5528-5550.DOI: 10.7150/thno.93745.
    [37] RamishettiS,KedmiR,GoldsmithM,et al.Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles[J].ACS Nano,2015,9(7):6706-6716.DOI: 10.1021/acsnano.5b02796.
    [38] FernandesS,QuattrociocchiM,CassaniM,et al.Antibody-free glycogen nanoparticles engage human immune T cells for intracellular delivery of small drugs or mRNA[J].ACS Nano,2024,18(42):28910-28923.DOI: 10.1021/acsnano.4c09156.
    [39] 张卉,冯永文,姚咏明.深刻理解烧创伤脓毒症发病机制的网络效应[J].中华医学杂志,2020,100(12):881-885.DOI: 10.3760/cma.j.cn112137-20191129-02603.
    [40] 姚咏明,张卉,李春盛.脓毒症治疗新策略:免疫调理研究新认识[J].医学与哲学,2017,38(4):28-31,42.DOI: 10.12014/j.issn.1002-0772.2017.02b.04.
  • 加载中
图(1)
计量
  • 文章访问数:  927
  • HTML全文浏览量:  124
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-22

目录

    /

    返回文章
    返回