Clinical effect of designing and harvesting expanded flaps assisted by indocyanine green angiography for repairing wounds after scar excision
-
摘要:
目的 探讨吲哚菁绿血管造影(ICGA)作为浅表血流可视化工具,在辅助扩张皮瓣设计、切取及修复瘢痕切除创面中的临床效果。 方法 该研究为回顾性观察性研究。2019年4月—2023年8月,中国医学科学院北京协和医学院整形外科医院收治19例符合入选标准患者,其中男8例、女11例,年龄3~38岁。患者瘢痕分布于头面部、躯干及四肢。Ⅰ期手术:于瘢痕周围选择合适区域埋置皮肤软组织扩张器行皮肤软组织扩张术。Ⅱ期手术:切除瘢痕组织(创面面积约100~210 cm²)并设计扩张皮瓣,行ICGA确定扩张皮瓣的目标穿支及其伴行静脉,调整皮瓣设计确保包含完整动静脉轴,使用单侧回切法切取面积为120~240 cm²扩张皮瓣并转移至受区。直接缝合供区创面。记录扩张皮瓣设计过程中ICGA的动脉期和静脉期持续时间。统计不同部位回切皮瓣的长宽比。Ⅱ期术后,观察皮瓣的血流灌注及存活情况,观察供区创面愈合情况及并发症发生情况。随访时,观察患者皮瓣外观、色泽和质地。 结果 ICGA的动脉期持续时间为10~27(18±5)s;静脉期持续时间为78~116(100±10)s。头面部、躯干和四肢的回切皮瓣长宽比分别为1.22±0.32、1.63±0.12和1.15±0.21。Ⅱ期术后,1例患者皮瓣存在大面积血流灌注不足,通过比较转移皮瓣前后的ICGA图像,行松开口角处的缝线处理,皮瓣血运得以恢复;其余患者皮瓣血流灌注良好。患者皮瓣均完全成活;供区创面愈合良好,无并发症发生。随访0.5~14个月,所有患者皮瓣外观良好,色泽和质地与周围皮肤相近。 结论 ICGA作为浅表血流可视化工具,不仅可以清晰呈现术前扩张皮瓣的微血管分布,辅助优化皮瓣设计,还能够评估术后皮瓣的血流灌注情况,减少并发症的发生,为扩张皮瓣的切取提供全程导航。 Abstract:Objective To explore the clinical effect of designing and harvesting expanded flaps assisted by indocyanine green angiography, as a superficial blood flow visualization tool for repairing wounds after scar excision. Methods This study was a retrospective observational study. From April 2019 to August 2023, 19 patients (8 males, 11 females; aged 3-38 years) treated at the Plastic Surgery Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences met the inclusion criteria. In stage Ⅰ surgery, tissue expanders were implanted in suitable areas around the scars for soft tissue expansion. In stage Ⅱ surgery, scar tissue was excised, resulting in wound areas ranging from 100 to 210 cm2 and expanded flaps were designed. ICGA was used to identify target perforators and accompanying veins, and the flap design was adjusted to ensure the inclusion of complete arterial and venous axes. Expanded flaps with back-up design ranging from 120 to 240 cm² were harvested and transferred to the recipient site, with direct closure of the donor site. The durations of the arterial and venous phases of ICGA during flap design were recorded. The length-to-width ratios of the flaps were calculated for different anatomical regions. Postoperatively in stage Ⅱ surgery, flap perfusion, survival, donor site healing, and complications were assessed. During follow-up, the appearance, color, and texture of the patient's flap were observed. Results The arterial phase of ICGA lasted 10-27 (18±5) s, and the venous phase lasted 78-116 (100±10) s. The length-to-width ratios of the flaps were 1.22 ± 0.32, 1.63±0.12, and 1.15±0.21 for the head and neck, trunk, and limb regions, respectively. In one case during the postoperative phase Ⅱ, ICGA showed significant hypoperfusion of the transferred flap and this was improved after loosening the sutures at the oral commissure. All flaps survived completely, with well-healed donor sites and no complications. During 0.5-14 months of follow-up, all flaps demonstrated excellent appearance, color, and texture, matching the surrounding skin. Conclusions As a superficial blood flow visualization tool, ICGA can not only clearly show the microvascular distribution of the expanded flap before operation, assist in optimizing the design of the flap, but also evaluate the blood perfusion of the flap after operation, reduce the occurrence of complications, and provides comprehensive navigation for the harvesting of expanded flaps. -
Key words:
- Cicatrix /
- Angiography /
- Perforator flap /
- Indocyanine green angiography /
- Soft tissue expansion /
- Flap design /
- Wound repair
-
(1)证实吲哚菁绿血管造影作为一种浅表血流可视化工具,能够清晰呈现扩张皮瓣的动静脉分布特征及血流灌注情况。
(2)该技术不仅可辅助术前的皮瓣设计与血流评估,还可为扩张皮瓣的整个设计过程提供精准导航,从而提高该皮瓣设计的精确性和转移手术的安全性。
Highlights:
(1)It was confirmed that indocyanine green angiography, as a superficial blood flow visualization tool, could clearly delineate the characteristics of arteriovenous distribution and blood perfusion in expanded flaps.
(2)This technology not only assisted in preoperative flap design and blood flow assessment but also provided precise navigation throughout the entire design process of expanded flaps, thereby enhancing the accuracy of flap design and the safety of transfer surgery.
皮肤软组织扩张术是一种将皮肤软组织扩张器置入正常皮肤下,通过逐渐增加皮肤软组织扩张器体积来施加压力,从而刺激皮肤生成额外的软组织,并利用这些新生成的皮肤软组织进行创面修复的技术[1, 2, 3],是修复包括瘢痕切除后创面在内的大面积软组织缺损的常用方法[4]。常用的扩张皮瓣切取方法包括推进、单侧回切和双侧回切法,其中单侧回切法可以结合推进或转位方式转移扩张皮肤,从而最大化利用扩张组织[5],是最为常见的皮瓣设计方式。尽管皮肤软组织扩张术具有延迟皮瓣效应,且扩张皮瓣的血运通常优于非扩张皮瓣[6, 7],但单侧回切过深仍可能导致皮瓣坏死[8]。目前,回切皮瓣的设计依旧遵循传统的任意型皮瓣设计原则,且受到长宽比的严格限制,这在一定程度上限制了扩张皮瓣设计的灵活性和转移效率。
有研究者曾提出,身体某些血管体区之间存在着真性血管吻合,沿着“穿支-真性血管吻合-穿支”的方向设计皮瓣,可以切取更长的皮瓣,且血运更加可靠[9, 10, 11]。如果在扩张皮瓣上定位到类似的血运“高速通道”,或许可以突破扩张皮瓣设计中严格的长宽比限制。吲哚菁绿血管造影(indocyanine green angiography,ICGA)是一种基于吲哚菁绿荧光剂和近红外线光学成像的血流可视化技术,能够清晰展示浅表组织的血管分布和皮瓣血运,辅助穿支定位和评估皮瓣的血流灌注情况[12]。本研究通过回顾ICGA辅助扩张皮瓣设计和切取的病例,探讨ICGA是否能够显示扩张皮瓣的穿支分支和血管吻合,帮助外科医师定位血管轴,精确指导回切设计,并在皮瓣转移后评估血流灌注,从而减少因血运不良引发的并发症。
1. 资料与方法
本回顾性观察性研究符合《赫尔辛基宣言》的基本原则,并获得中国医学科学院北京协和医学院(以下简称本单位)伦理委员会批准[批号:(2024)注册第(388)号]。患者对此项研究知情,并同意在不泄露其隐私的情况下对其病历资料进行分析、使用。
1.1 入选标准
纳入标准:(1)应用ICGA辅助扩张皮瓣设计与切取,用以修复瘢痕等病损的患者;(2)采用单侧回切法切取皮瓣。排除标准:临床资料不完整的患者。
1.2 临床资料
2019年4月—2023年8月,本单位收治19例符合入选标准患者,其中男8例、女11例,年龄3~38岁。患者瘢痕分布于头面部、躯干及四肢。共转移21个扩张皮瓣用于修复瘢痕切除后创面。1例患者移植3个皮瓣,用于修复热压伤后造成的面部瘢痕切除创面。
1.3 ICGA
将吲哚菁绿用灭菌注射用水稀释至2.5 mg/mL,按0.2 mg/kg的剂量经外周静脉快速注射,并立即用10 mL生理盐水冲洗静脉以确保药物完全进入循环。关闭手术室灯光,通过近红外激光激发血流中的吲哚菁绿产生荧光,同步启动录像设备记录扩张皮肤的血流荧光影像。显影过程分为动脉期与静脉期。动脉期可清晰呈现动脉网络,动脉血管显影顺序依次为扩张皮肤以外的穿支、扩张皮肤的穿支及其分支、分支间的血管吻合支。吲哚菁绿随血液回流至静脉后进入静脉期,动脉影像消退,扩张皮肤的浅表静脉逐渐显影,静脉网络清晰可见。动脉期的持续时间较短,而静脉期可持续较长时间。
1.4 Ⅰ期皮肤软组织扩张术
全面评估患者的一般状况及病损部位、大小、形状及周围组织情况,选择合适额定容量、形状的皮肤软组织扩张器。术中先切开皮肤及皮下组织,随后钝性剥离形成略大于皮肤软组织扩张器的皮下腔隙,将皮肤软组织扩张器平展置入,确保注射壶置于皮下浅层,然后分层缝合切口并固定皮肤软组织扩张器,必要时放置引流管。术后定期向皮肤软组织扩张器内注水,每次注水量为皮肤软组织扩张器容量的10%~15%,直至达到预定扩张量。
1.5 Ⅱ期皮瓣转移术
1.5.1 创面床准备及扩张皮瓣设计
切开皮肤及皮下组织,锐性分离并彻底切除瘢痕至正常组织层。根据瘢痕切除后形成创面的大小、形状和深度,设计扩张皮瓣。考虑到扩张皮瓣具有一定的回缩率(约20%),在设计皮瓣时,适当扩大皮瓣设计的面积,确保其提供足够的皮肤和软组织来覆盖创面。
1.5.2 扩张皮瓣设计的校正
在预设计的扩张皮瓣区域行ICGA,于动脉期快速定位1或2条目标穿支,其分支朝向皮瓣回切方向,并与邻近穿支分支形成血管吻合网络。术者在扩张皮肤上逐级标记目标穿支及其分支,确定皮瓣的动脉轴。进入静脉期后,观察动脉轴周围伴行的浅静脉,选择距离最近、走行方向一致的静脉作为静脉轴,以确保皮瓣的静脉回流,并在扩张皮肤上进行标记。ICGA结果由2名具有影像评估经验的外科医师进行独立分析,以确保评估的准确性和一致性。根据动脉轴和静脉轴的位置,调整皮瓣设计,确保皮瓣包含完整的动脉轴和静脉轴,并根据皮瓣血流情况合理调整回切终点,避免横断轴向血管。本研究中,21个扩张皮瓣均在ICGA辅助下成功定位共轴的动脉与静脉。
1.5.3 皮瓣血运评估与转移
根据调整后的皮瓣设计方案,采用单侧回切法切开皮肤及皮下组织,完整掀起皮瓣,将其转移至受区,用以修复瘢痕切除后创面。回切皮瓣面积为120~240 cm²。直接拉拢缝合供区创面。随后再次行ICGA评估皮瓣血流灌注情况,识别造影结束时荧光相对值<25%的区域,标记为血流灌注不足区域[12]。对于血流灌注不足区域,首先尝试调整皮瓣旋转角度或张力;若调整后血流灌注仍不理想,则根据创面修复需求,切除血流灌注不足区域或对该区域进行皮肤修薄及植皮处理,以确保皮瓣存活并达到最佳修复效果。
1.5.4 术后处理
术后即刻采用适当的压力包扎和固定。早期密切观察皮瓣血运,包括颜色、温度、肿胀程度等情况,必要时采用多普勒超声监测血流;保持皮瓣蒂部无张力,避免受压或扭曲,确保血供通畅。常规预防性使用抗生素,并根据创面渗出情况及时更换敷料,保持创面清洁干燥。妥善管理引流装置,保持引流通畅,密切观察引流液的颜色、量和性质,并根据引流情况决定拔管时间,以预防血肿、感染等并发症的发生。指导患者术后早期进行循序渐进的功能锻炼,防止关节僵硬及肌肉萎缩,同时避免过度活动或外力撞击皮瓣区域。根据患者个体情况制定个性化的随访计划。
1.6 观察指标
记录扩张皮瓣设计过程中ICGA的动脉期和静脉期持续时间。统计不同部位回切皮瓣的长宽比。Ⅱ期术后,观察皮瓣的血流灌注及存活情况,观察供区创面愈合情况及并发症发生情况。随访,观察患者皮瓣外观、色泽和质地。
2. 结果
2.1 一般结果
ICGA的动脉期持续时间为10~27(18±5)s;静脉期持续时间为78~116(100±10)s。头面部、躯干和四肢的回切皮瓣长宽比分别为1.22±0.32、1.63±0.12和1.15±0.21。Ⅱ期术后,1例患者皮瓣存在大面积血流灌注不足,通过比较转移皮瓣前后的ICGA图像,观察到皮瓣口角处与回切终点之间形成了张力线,遂松开口角处的缝线,皮瓣血运得以恢复;其余患者皮瓣血流灌注良好。患者皮瓣均完全成活;供区创面愈合良好,无并发症发生。随访0.5~14个月,所有患者皮瓣外观良好,色泽和质地与周围皮肤相近。
2.2 典型病例
例1
女,31岁,入院时诊断为右侧大腿烫伤后瘢痕。体格检查显示右侧大腿区域存在21 cm×10 cm的白色瘢痕,质地柔软,未突出于皮肤表面,表面欠光滑,边界欠清晰。于右侧大腿埋置额定容量为800 mL长方形皮肤软组织扩张器行Ⅰ期手术。Ⅱ期术前行ICGA,扩张皮瓣区清晰显示轴向动脉和静脉影像,动脉期持续22 s,静脉期持续92 s。术中根据ICGA显影在扩张皮瓣上标记目标穿支及其伴行静脉的位置及走行,合理设计回切线位置。沿设计线切开皮肤及皮下组织,切取面积为240 cm²的扩张皮瓣,转移至右侧大腿瘢痕切除后的创面进行修复。行ICGA显示皮瓣血流灌注良好。术后皮瓣完全成活;供区创面愈合良好,无并发症发生。随访4个月,皮瓣外观良好,色泽和质地与周围皮肤相近。见图1。
例2
男,17岁,入院时诊断为左侧面部烧伤后瘢痕。体格检查显示左侧面颊部及颏部区域存在15 cm×8 cm的暗红色片状不规则瘢痕,微隆起于皮肤表面,瘢痕表面较为平整。于左颈部埋置额定容量为200 mL长方形皮肤软组织扩张器行Ⅰ期手术。Ⅱ期术前行ICGA,扩张皮瓣区域清晰显示轴向动脉和静脉影像,其中动脉期持续19 s,静脉期持续93 s。术中依据ICGA结果,在扩张皮瓣上精确标定目标穿支及其伴行静脉的位置与走行,并据此合理设计回切线。沿设计线切开皮肤及皮下组织,将面积约140 cm²的扩张皮瓣转移至左侧面部瘢痕切除后的创面。术后即刻,观察到皮瓣远端颜色进行性加深,随即再次行ICGA检查,观察到皮瓣口角处与回切终点之间形成了张力线,松开口角处缝线后,第3次行ICGA显示皮瓣血流灌注恢复良好。术后皮瓣完全成活,供区创面愈合良好,未出现并发症。随访12个月,皮瓣外观良好,色泽和质地与周围皮肤相近。见图2。
图 2 吲哚菁绿血管造影(ICGA)辅助下设计切取扩张皮瓣修复例2患者面部瘢痕切除创面的效果。2A.Ⅱ期术前,瘢痕情况及扩张皮瓣设计;2B.Ⅱ期术前,扩张皮瓣的ICGA动脉期显像,红色箭头指示穿支及其分支;2C.Ⅱ期术前,扩张皮瓣的ICGA静脉期显像,黄色箭头指示图2C中穿支及其分支的伴行浅表静脉;2D.Ⅱ期术中,首次ICGA检查显示回切皮瓣血流灌注可;2E.皮瓣与创面切口完全缝合后,二次ICGA检查显示皮瓣血流灌注情况,白色虚线圈内区域(患者下唇部)存在动脉血流灌注不足;2F.松开口角处缝线后,三次ICGA检查显示白色虚线圈内下唇区域血流灌注改善;2G.术后12个月随访,皮瓣外观良好,色泽和质地与周围皮肤相近3. 讨论
随着对穿支解剖认知的不断深入,临床医师对穿支皮瓣解剖的关注点已从主干穿支转移到穿支分支的显微解剖层面,穿支分支皮瓣这一概念也逐渐进入整形外科医师的视野并受到广泛关注[13, 14]。在皮肤软组织扩张器的置入过程中,由于基底穿支已被剥离结扎,扩张皮肤内主要分布着周围穿支的分支血管。若能准确定位这些穿支分支血管,即可按照轴型皮瓣的设计原则进行扩张皮瓣设计,这不仅提高了皮瓣设计的灵活性,也提升了扩张皮瓣的转移效率[15]。ICGA作为观察穿支分支皮瓣和超薄皮瓣穿支分支分布的常用方法[13],能够清晰显示直径<0.2 mm的微小血管。然而,受近红外线透射深度的限制,ICGA仅能显示厚度<1 cm的皮肤血管[13]。本团队研究显示,得益于皮肤扩张过程中的变薄机制[16],ICGA可清晰显示身体各部位扩张皮瓣的动静脉网络,包括穿支分支及血管吻合情况。扩张后皮肤厚度降低,尤其是脂肪层和真皮层变薄,使得ICGA能够清晰显示位于脂肪层内的穿支分支和真皮下的血管吻合[17, 18, 19]。鉴于未扩张皮肤厚度较大导致ICGA显像清晰度欠佳,本研究未在扩张前应用ICGA进行穿支定位。总之,本研究将ICGA应用于扩张皮瓣的微血管观察,成功辅助外科医师定位动脉血管轴,并精确指导了回切皮瓣设计。
术中,SPY Elite系统(ICGA仪器自带软件)可在ICGA过程中实时显示荧光强度曲线[20, 21],自荧光开始显示至荧光峰值可视为动脉期,随后为静脉期[22, 23]。ICGA动脉期持续时间较短,因此在有限时间内定位合适的穿支、穿支分支及真性血管吻合形成的动脉轴具有一定挑战性[24]。为提高血管信息捕捉效率,医师于术前可在扩张皮瓣上预标记回切线作为参照,以便快速定位穿支及其分支位置并标记血管走行。本团队实践表明,外科医师经过2或3次操作练习即可熟练掌握动脉轴定位技术,并在扩张皮肤上做出准确标记。相比之下,ICGA静脉期持续时间较长,静脉网络显示充分,便于外科医师寻找与动脉伴行的浅静脉。一般来讲,扩张皮瓣远端出现静脉淤血的概率高于动脉缺血[25],因此准确定位伴行静脉对确保皮瓣成活至关重要[26]。ICGA可在单次检测周期内同时显示动静脉分布,有助于观察目标穿支位置及走行,精确设计回切终点,避免横断关键血管,确保皮瓣充分血流灌注和引流。
在本研究纳入的21个扩张皮瓣中,均成功定位到了动静脉共同的血管轴。但前述现象并非巧合,从ICGA显像结果可见穿支向多个方向发出分支,这一现象与Kimura等[27]的研究结果一致。此外,皮肤软组织扩张术可产生延迟效应,这一现象在扩张前后的ICGA图像对比中得到证实:扩张后穿支体区之间形成了稳定的真性血管吻合。上述扩张皮瓣血管解剖特点确保了扩张皮肤上存在多条“高速通道”,为血管轴的选择提供了多元化可能。ICGA造影结果可辅助调整扩张皮瓣的设计,优化回切点位置。回切点的位置决定了皮瓣的长宽比,沿穿支-真性吻合-穿支轴方向设计的皮瓣突破了任意型皮瓣长宽比的限制,使设计更加灵活,血运更加可靠。本组病例中所有长宽比>1∶1的皮瓣均完全成活。然而,若术中无法定位动静脉共同血管轴,建议调整皮瓣设计方案或回归任意型皮瓣设计,必要时可在扩张皮肤上进行额外延迟[8]。
ICGA在修复重建外科中的主要应用场景之一是皮瓣血流灌注评估[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]。得益于吲哚菁绿的短半衰期特性[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30],术者可多次使用ICGA辅助皮瓣设计和评估转移后血运情况[31]。本研究中,典型病例中的例2患者采用颈部扩张皮瓣修复面部瘢痕切除后创面,术中行ICGA检测观察到回切皮瓣存在大面积血流灌注不足区域。通过对比分析多次ICGA血流灌注结果,术者及时调整皮瓣缝合方案,最终成功改善了皮瓣血流灌注,确保了皮瓣成活。基于临床经验,本研究团队提出了ICGA指导下处理血流灌注不足区域的处理原则:若皮瓣调整无法完全解决血流灌注不足问题,可根据临床需要切除血流灌注不足区域或将该区域修薄后植皮[32],以最大限度减少术后皮瓣血运相关并发症。尽管ICGA可以为皮瓣血运提供客观评价,然而ICGA在皮瓣血运评估方面存在假阳性的问题。皮瓣转移后,血流灌注情况随时间在不断变化[33, 34],尤其是扩张皮瓣血运稳定的时间可能在转移后的6~24 h,术后即刻的ICGA不能反映皮瓣最终的血流灌注情况。因此,临床医师还需要依据经验来做出合理的临床决策。
本研究存在一些局限性,如回顾性、单中心研究、样本量较小以及研究区域主要集中于头面部等。未来研究需要扩大样本量,开展多中心前瞻性随机对照试验,并与红外线热成像技术[35]等其他无创血管探测技术进行对比,为证实ICGA在扩张皮瓣应用中的有效性提供更高级别的临床证据。
综上所述,ICGA技术是辅助扩张皮瓣设计和切取的可靠工具,可清晰显示扩张皮瓣上的穿支分支和血管吻合情况,准确定位血管轴;同时,ICGA技术还可评估转移皮瓣的血流灌注情况。扩张皮瓣的精确设计和血运评估有助于减少皮瓣移植后发生坏死等并发症,提高手术安全性。通过充分利用其多重功能,ICGA能够为扩张皮瓣切取提供全程导航。
胡雅楠:采集资料、分析数据、撰写文章;谢婷珺、刘元波、朱珊、杨增杰、田佳、甘承、焦虎、李杉珊:实施手术、分析数据、修改文章;陈子翔、周璐、韩兵、晋圣阳、曾妍、汪淼:实施手术、采集资料、分析数据;臧梦青:酝酿和设计研究、实施手术、采集资料、修改文章所有作者声明不存在利益冲突 -
参考文献
(35) [1] GuoY, SongY, XiongS, et al. Mechanical stretch induced skin regeneration: molecular and cellular mechanism in skin soft tissue expansion[J]. Int J Mol Sci, 2022,23(17): 9622. DOI: 10.3390/ijms23179622. [2] RadwanAM, ZideMF. Tissue expansion in the head and neck[J]. Atlas Oral Maxillofac Surg Clin North Am, 2019,27(2):167-173. DOI: 10.1016/j.cxom.2019.05.010. [3] TongX, LuJ, ZhangW, et al. Efficacy and safety of external tissue expansion technique in the treatment of soft tissue defects: a systematic review and meta-analysis of outcomes and complication rates[J/OL]. Burns Trauma, 2022,10:tkac045[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/36518877/. DOI: 10.1093/burnst/tkac045. [4] 张伟, 张卫东, 陈斓, 等. 扩张皮瓣整复大面积烧伤后面颈部瘢痕挛缩畸形的临床效果[J]. 中华烧伤与创面修复杂志, 2023, 39(9):826-834. DOI: 10.3760/cma.j.cn501225-20230706-00248. [5] ZideBM, KarpNS. Maximizing gain from rectangular tissue expanders[J]. Plast Reconstr Surg, 1992,90(3):500-504; discussion 505-506. [6] CherryGW, AustadE, PasykK, et al. Increased survival and vascularity of random-pattern skin flaps elevated in controlled, expanded skin[J]. Plast Reconstr Surg, 1983,72(5):680-687. DOI: 10.1097/00006534-198311000-00018. [7] ZhuH, XieY, XieF, et al. Prevention of necrosis of adjacent expanded flaps by surgical delay[J]. Ann Plast Surg, 2014,73(5):525-530. DOI: 10.1097/SAP.0b013e31827fafce. [8] XieT, LiuY, ZhuS, et al. Finding perforator "freeway" for design optimization of expanded flaps by indocyanine green angiography[J]. Plast Reconstr Surg, 2025,155(2):414e-418e. DOI: 10.1097/PRS.0000000000011545. [9] TaylorGI, ChubbDP, AshtonMW. True and 'choke' anastomoses between perforator angiosomes: part Ⅰ. anatomical location[J]. Plast Reconstr Surg, 2013,132(6):1447-1456. DOI: 10.1097/PRS.0b013e3182a80638. [10] OgawaR, OkiK, HyakusokuH. Skin perforator freeways and pathways: understanding the role of true and choke anastomoses between perforator angiosomes and their impact on skin flap planning and outcomes[J]. Plast Reconstr Surg, 2014,133(5):719e-720e. DOI: 10.1097/PRS.0000000000000139. [11] AltafFM. The anatomical basis of the medial sural artery perforator flaps[J]. West Indian Med J, 2011,60(6):622-627. [12] GurtnerGC, JonesGE, NeliganPC, et al. Intraoperative laser angiography using the SPY system: review of the literature and recommendations for use[J]. Ann Surg Innov Res, 2013,7(1):1. DOI: 10.1186/1750-1164-7-1. [13] NarushimaM, YamasobaT, IidaT, et al. Pure skin perforator flaps: the anatomical vascularity of the superthin flap[J]. Plast Reconstr Surg, 2018,142(3):351e-360e. DOI: 10.1097/PRS.0000000000004698. [14] Saint-CyrM, WongC, SchaverienM, et al. The perforasome theory: vascular anatomy and clinical implications[J]. Plast Reconstr Surg, 2009,124(5):1529-1544. DOI: 10.1097/PRS.0b013e3181b98a6c. [15] HyakusokuH, GaoJH, PenningtonDG, et al. The microvascular augmented subdermal vascular network (ma-SVN) flap: its variations and recent development in using intercostal perforators[J]. Br J Plast Surg, 2002,55(5):402-411. DOI: 10.1054/bjps.2002.3865. [16] LiuY, ZangM, ZhuS, et al. Pre-expanded paraumbilical perforator flap[J]. Clin Plast Surg, 2017,44(1):99-108. DOI: 10.1016/j.cps.2016.08.003. [17] OnodaS, AzumiS, HasegawaK, et al. Preoperative identification of perforator vessels by combining MDCT, doppler flowmetry, and ICG fluorescent angiography[J]. Microsurgery, 2013,33(4):265-269. DOI: 10.1002/micr.22079. [18] Vander KolkCA, McCannJJ, KnightKR, et al. Some further characteristics of expanded tissue[J]. Clin Plast Surg, 1987,14(3):447-453. [19] ChanP, ColonAF, CluneJ, et al. External tissue expansion in complex extremity reconstruction[J]. J Hand Surg Am, 2021,46(12):1094-1103. DOI: 10.1016/j.jhsa.2021.07.039. [20] ErogluS, BuyukdoganH, DuranA. Direct-to-implant retropectoral dual plane approach with autologous inferior-based dermal flap: does spy-elite laser angiographic system reduce complication rates?[J]. Aesthetic Plast Surg, 2024,48(21):4414-4420. DOI: 10.1007/s00266-024-04075-1. [21] TaghizadehF, TroobSH, WaxMK. The role of fluorescent angiography in free flap reconstruction of the head and neck[J]. Laryngoscope, 2023,133(6):1388-1393. DOI: 10.1002/lary.30450. [22] GoncalvesLN, van den HovenP, van SchaikJ, et al. Perfusion parameters in near-infrared fluorescence imaging with indocyanine green: a systematic review of the literature[J]. Life (Basel), 2021,11(5):433. DOI: 10.3390/life11050433. [23] YangCE, ChungSW, LeeDW, et al. Evaluation of the relationship between flap tension and tissue perfusion in implant-based breast reconstruction using laser-assisted indocyanine green angiography[J]. Ann Surg Oncol, 2018,25(8):2235-2240. DOI: 10.1245/s10434-018-6527-1. [24] 王石, 董帅, 曹阳, 等. 高选择性动脉吲哚菁绿造影在游离股前外侧皮瓣设计中的应用[J]. 中华烧伤与创面修复杂志, 2024, 40(10): 948-954. DOI: 10.3760/cma.j.cn501225-20240513-00174. [25] WangC, ZhangJ, HyakusokuH, et al. An overview of pre-expanded perforator flaps: part 2, clinical applications[J]. Clin Plast Surg, 2017,44(1):13-20. DOI: 10.1016/j.cps.2016.09.007. [26] TanO, AtikB, BekereciogluM. Supercharged reverse-flow sural flap: a new modification increasing the reliability of the flap[J]. Microsurgery, 2005,25(1):36-43. DOI: 10.1002/micr.20072. [27] KimuraN, SaitohM, OkamuraT, et al. Concept and anatomical basis of microdissected tailoring method for free flap transfer[J]. Plast Reconstr Surg, 2009,123(1):152-162. DOI: 10.1097/PRS.0b013e3181934756. [28] DriessenC, ArnardottirTH, LorenzoAR, et al. How should indocyanine green dye angiography be assessed to best predict mastectomy skin flap necrosis? A systematic review[J]. J Plast Reconstr Aesthet Surg, 2020,73(6):1031-1042. DOI: 10.1016/j.bjps.2020.02.025. [29] BigcasJM, DeBiaseCA, HoT. Indocyanine green angiography as the principal design and perfusion assessment tool for the supraclavicular artery island flap in head and neck reconstruction[J]. Cureus, 2022,14(9):e29007. DOI: 10.7759/cureus.29007. [30] GelişkenF. Indocyanine green angiography[J]. Turk J Ophthalmol, 2024,54(1):38-45. DOI: 10.4274/tjo.galenos.2023.89735. [31] PanettellaT, MeroniM, ScaglioniMF. How to increase the success rate in microsurgical free and pedicled flap reconstructions with intraoperative multistep ICG imaging: a case series with 400 consecutive cases[J]. J Plast Reconstr Aesthet Surg, 2024,97:147-155. DOI: 10.1016/j.bjps.2024.07.047. [32] WangM, ZangM, ZhuS, et al. Utility of indocyanine green angiography for preventing pre-expanded extended lower trapezius myocutaneous flap necrosis: how to make the correct decision for hypoperfused areas[J]. J Reconstr Microsurg, 2023,39(5):383-391. DOI: 10.1055/a-1939-5606. [33] MattisonGL, LewisPG, GuptaSC, et al. SPY imaging use in postmastectomy breast reconstruction patients: preventative or overly conservative?[J]. Plast Reconstr Surg, 2016,138(1):15e-21e. DOI: 10.1097/PRS.0000000000002266. [34] LiuEH, ZhuSL, HuJ, et al. Intraoperative SPY reduces post-mastectomy skin flap complications: a systematic review and meta-analysis[J]. Plast Reconstr Surg Glob Open, 2019,7(4):e2060. DOI: 10.1097/GOX.0000000000002060. [35] ZhangY, XiaoW, NgS, et al. Infrared thermography-guided designing and harvesting of pre-expanded pedicled flap for head and neck reconstruction[J]. J Plast Reconstr Aesthet Surg, 2021,74(9):2068-2075. DOI: 10.1016/j.bjps.2020.12.102. -
图 2 吲哚菁绿血管造影(ICGA)辅助下设计切取扩张皮瓣修复例2患者面部瘢痕切除创面的效果。2A.Ⅱ期术前,瘢痕情况及扩张皮瓣设计;2B.Ⅱ期术前,扩张皮瓣的ICGA动脉期显像,红色箭头指示穿支及其分支;2C.Ⅱ期术前,扩张皮瓣的ICGA静脉期显像,黄色箭头指示图2C中穿支及其分支的伴行浅表静脉;2D.Ⅱ期术中,首次ICGA检查显示回切皮瓣血流灌注可;2E.皮瓣与创面切口完全缝合后,二次ICGA检查显示皮瓣血流灌注情况,白色虚线圈内区域(患者下唇部)存在动脉血流灌注不足;2F.松开口角处缝线后,三次ICGA检查显示白色虚线圈内下唇区域血流灌注改善;2G.术后12个月随访,皮瓣外观良好,色泽和质地与周围皮肤相近
-