留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

虾青素对高糖处理的人皮肤成纤维细胞衰老的作用及其机制

唐黎珺 樊亮花 王静荣 罗蒙 杨小鑫 仲瑞青 高红艳

唐黎珺, 樊亮花, 王静荣, 等. 虾青素对高糖处理的人皮肤成纤维细胞衰老的作用及其机制[J]. 中华烧伤与创面修复杂志, 2025, 41(11): 1101-1110. DOI: 10.3760/cma.j.cn501225-20250109-00018.
引用本文: 唐黎珺, 樊亮花, 王静荣, 等. 虾青素对高糖处理的人皮肤成纤维细胞衰老的作用及其机制[J]. 中华烧伤与创面修复杂志, 2025, 41(11): 1101-1110. DOI: 10.3760/cma.j.cn501225-20250109-00018.
Tang LJ,Fan LH,Wang JR,et al.Effect and mechanism of astaxanthin on the aging of high glucose-treated human skin fibroblasts[J].Chin J Burns Wounds,2025,41(11):1101-1110.DOI: 10.3760/cma.j.cn501225-20250109-00018.
Citation: Tang LJ,Fan LH,Wang JR,et al.Effect and mechanism of astaxanthin on the aging of high glucose-treated human skin fibroblasts[J].Chin J Burns Wounds,2025,41(11):1101-1110.DOI: 10.3760/cma.j.cn501225-20250109-00018.

虾青素对高糖处理的人皮肤成纤维细胞衰老的作用及其机制

doi: 10.3760/cma.j.cn501225-20250109-00018
基金项目: 

国家临床重点专科建设项目 Z155080000004

上海市康复医学重中之重研究中心 2023ZZ02027

详细信息
    通讯作者:

    高红艳,Email:13899988430@163.com

Effect and mechanism of astaxanthin on the aging of high glucose-treated human skin fibroblasts

Funds: 

National Key Clinical Specialty Discipline Construction Project of China Z155080000004

Shanghai Research Center of Rehabilitation Medicine (Top Priority Research Center of Shanghai) 2023ZZ02027

More Information
  • 摘要:   目的  探讨虾青素对高糖处理的人皮肤成纤维细胞(Fb)衰老的作用及其机制。  方法  该研究为实验研究。取人皮肤Fb,分为常规培养的对照组、用终物质的量浓度30 mmol/L的葡萄糖处理的高糖组及分别用终物质的量浓度25、50 μmol/L的虾青素预处理后再同高糖组处理的低虾青素组、高虾青素组。培养48 h后,采用细胞计数试剂盒-8检测细胞存活率,用荧光探针法检测细胞中活性氧水平,采用比色法检测细胞中丙二醛、谷胱甘肽、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)水平,采用蛋白质印迹法检测细胞中p53、磷酸化p53、p21、p16、Rb、磷酸化Rb、基质金属蛋白酶1(MMP1)、MMP3、MMP13蛋白表达水平及细胞质和细胞核中核转录因子红系2相关因子2(Nrf2)蛋白表达水平。另取人皮肤Fb,分为同前处理的对照组、高糖组、高虾青素组及用终物质的量浓度为50 μmol/L的虾青素和10 μmol/L的ML385预处理后再同高糖组细胞处理的高虾青素+ML385组。培养48 h后,同前检测细胞存活率,细胞中p53、磷酸化p53、p21、p16、Rb、磷酸化Rb、MMP1、MMP3、MMP13蛋白表达水平及细胞质和细胞核中Nrf2蛋白表达水平。以上实验中样本数均为3。  结果  培养48 h后,与对照组比较,高糖组细胞存活率明显降低(P<0.05);与高糖组比较,低虾青素组和高虾青素组细胞存活率均明显升高(P<0.05);与低虾青素组比较,高虾青素组细胞存活率明显升高(P<0.05)。与对照组比较,高糖组细胞中活性氧、丙二醛水平均明显升高(P<0.05),谷胱甘肽、SOD、CAT、GSH-Px水平均明显降低(P<0.05)。与高糖组比较,低虾青素组细胞中活性氧、丙二醛水平均明显降低(P<0.05),CAT、GSH-Px水平均明显升高(P<0.05);高虾青素组细胞中活性氧、丙二醛水平均明显降低(P<0.05),谷胱甘肽、SOD、CAT、GSH-Px水平均明显升高(P<0.05)。与低虾青素组比较,高虾青素组细胞中活性氧、丙二醛水平均明显降低(P<0.05),谷胱甘肽、CAT、GSH-Px水平均明显升高(P<0.05)。与对照组比较,高糖组细胞中p53、p21、磷酸化p53、p16、Rb、MMP1、MMP3、MMP13蛋白表达水平均明显升高(P<0.05),磷酸化Rb蛋白表达水平明显降低(P<0.05)。与高糖组比较,低虾青素组细胞中p53、p21、磷酸化p53、MMP13蛋白表达水平均明显降低(P<0.05),磷酸化Rb蛋白表达水平明显升高(P<0.05);高虾青素组细胞中p53、p21、磷酸化p53、p16、Rb、MMP1、MMP3、MMP13蛋白表达水平均明显降低(P<0.05),磷酸化Rb蛋白表达水平明显升高(P<0.05)。与低虾青素组比较,高虾青素组细胞中p21、磷酸化p53、p16、Rb、MMP1蛋白表达水平均明显降低(P<0.05)。与对照组、高虾青素组比较,高糖组细胞质中Nrf2蛋白表达水平明显升高(P值均<0.05),细胞核中Nrf2蛋白表达水平明显降低(P值均<0.05)。与低虾青素组比较,高糖组细胞质中Nrf2蛋白表达水平明显升高(P<0.05);高虾青素组细胞质中Nrf2蛋白表达水平明显降低(P<0.05),细胞核中Nrf2蛋白表达水平明显升高(P<0.05)。培养48 h后,与对照组[(100.0±6.0)%]比较,高糖组细胞存活率[(73.9±2.2)%]明显降低(P<0.05);与高糖组比较,高虾青素组细胞存活率[(93.8±1.5)%]明显升高(P<0.05);与高虾青素组比较,高虾青素+ML385组细胞存活率[(71.7±2.7)%]明显降低(P值均<0.05)。与对照组、高虾青素组比较,高糖组细胞中p53、磷酸化p53、p21、p16、Rb、MMP1、MMP3、MMP13蛋白表达水平均明显升高(P<0.05),磷酸化Rb蛋白表达水平明显降低(P值均<0.05);与高虾青素组比较,高虾青素+ML385组细胞中p53、磷酸化p53、p21、p16、Rb、MMP1、MMP13蛋白表达水平均明显升高(P<0.05),磷酸化Rb蛋白表达水平明显降低(P<0.05)。与对照组比较,高糖组细胞质中Nrf2蛋白表达水平明显升高(P<0.05);与高糖组比较,高虾青素组细胞质中Nrf2蛋白表达水平明显降低(P<0.05),细胞核中Nrf2蛋白表达水平明显升高(P<0.05);与高虾青素组比较,高虾青素+ML385组细胞核中Nrf2蛋白表达水平明显降低(P<0.05)。  结论  虾青素通过调节Nrf2核位移抑制高糖处理的人皮肤Fb氧化应激反应,下调细胞衰老相关蛋白的表达,从而缓解细胞衰老。

     

  • 参考文献(40)

    [1] TomicD, ShawJE, MaglianoDJ. The burden and risks of emerging complications of diabetes mellitus[J]. Nat Rev Endocrinol, 2022, 18(9): 525-539.DOI: 10.1038/s41574-022-00690-7.
    [2] 李威杰,秦晓光,朱甜,等. 减重与代谢外科新进展[J]. 中华消化外科杂志,2023,22(8):958-964.DOI: 10.3760/cma.j.cn115610-20230711-00399.
    [3] BurgessJL, WyantWA, Abdo AbujamraB, et al. Diabetic wound-healing science[J]. Medicina (Kaunas), 2021, 57(10):1072.DOI: 10.3390/medicina57101072.
    [4] WolfSJ, MelvinWJ, GallagherK. Macrophage-mediated inflammation in diabetic wound repair[J]. Semin Cell Dev Biol, 2021, 119: 111-118.DOI: 10.1016/j.semcdb.2021.06.013.
    [5] StoneA, DonohueCM. Diabetic foot ulcers in geriatric patients[J]. Clin Geriatr Med, 2024, 40(3): 437-447.DOI: 10.1016/j.cger.2024.03.002.
    [6] WilkinsonHN, HardmanMJ. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10(9): 200223.DOI: 10.1098/rsob.200223.
    [7] DengL, DuC, SongP, et al. The role of oxidative stress and antioxidants in diabetic wound healing[J]. Oxid Med Cell Longev, 2021, 2021: 8852759.DOI: 10.1155/2021/8852759.
    [8] MuX, WuX, HeW, et al. Pyroptosis and inflammasomes in diabetic wound healing[J]. Front Endocrinol (Lausanne), 2022, 13: 950798.DOI: 10.3389/fendo.2022.950798.
    [9] NeaguM, ConstantinC, SurcelM, et al. Diabetic neuropathy: a NRF2 disease?[J]. J Diabetes, 2024, 16(9): e13524.DOI: 10.1111/1753-0407.13524.
    [10] ZhangDD. Thirty years of NRF2: advances and therapeutic challenges[J]. Nat Rev Drug Discov, 2025, 24(6): 421-444.DOI: 10.1038/s41573-025-01145-0.
    [11] 郭佳,张军霞. 核转录因子红系2相关因子2在创面愈合中的作用研究进展[J]. 中华烧伤与创面修复杂志,2023,39(1): 91-95.DOI: 10.3760/cma.j.cn501225-20220531-00209.
    [12] UrakazeM, KobashiC, SatouY, et al. The beneficial effects of astaxanthin on glucose metabolism and modified low-density lipoprotein in healthy volunteers and subjects with prediabetes[J]. Nutrients, 2021, 13(12):4381.DOI: 10.3390/nu13124381.
    [13] NishidaY, BergPC, ShakersainB, et al. Astaxanthin: past, present, and future[J]. Mar Drugs, 2023, 21(10):514.DOI: 10.3390/md21100514.
    [14] ZhangQ, LuoC, LiZ, et al. Astaxanthin activates the Nrf2/Keap1/HO-1 pathway to inhibit oxidative stress and ferroptosis, reducing triphenyl phosphate (TPhP)-induced neurodevelopmental toxicity[J]. Ecotoxicol Environ Saf, 2024, 271: 115960.DOI: 10.1016/j.ecoenv.2024.115960.
    [15] HafezMH, El-FarAH, ElblehiSS. Astaxanthin alleviates fipronil-induced neuronal damages in male rats through modulating oxidative stress, apoptosis, and inflammatory markers[J]. Sci Rep, 2025, 15(1): 14299.DOI: 10.1038/s41598-025-95447-3.
    [16] ZhuY, RuanCX, WangJ, et al. High glucose inhibits the survival of HRMCs and its mechanism[J]. Eur Rev Med Pharmacol Sci, 2022, 26(16): 5683-5688.DOI: 10.26355/eurrev_202208_29502.
    [17] ZhangZ, QiuY, LiW, et al. Astaxanthin alleviates foam cell formation and promotes cholesterol efflux in ox-LDL-induced RAW264.7 cells via circTPP2/miR-3073b-5p/ABCA1 pathway[J]. Molecules, 2023, 28(4):1701.DOI: 10.3390/molecules28041701.
    [18] YangCS, GuoXS, YueYY, et al. Astaxanthin promotes the survival of adipose-derived stem cells by alleviating oxidative stress via activating the Nrf2 signaling pathway[J]. Int J Mol Sci, 2023, 24(4):3850.DOI: 10.3390/ijms24043850.
    [19] JuCC, LiuXX, LiuLH, et al. Epigenetic modification: a novel insight into diabetic wound healing[J]. Heliyon, 2024, 10(6): e28086.DOI: 10.1016/j.heliyon.2024.e28086.
    [20] WangG, YangF, ZhouW, et al. The initiation of oxidative stress and therapeutic strategies in wound healing[J]. Biomed Pharmacother, 2023, 157: 114004.DOI: 10.1016/j.biopha.2022.114004.
    [21] LiuY, LiuY, HeW, et al. Fibroblasts: immunomodulatory factors in refractory diabetic wound healing[J]. Front Immunol, 2022, 13: 918223.DOI: 10.3389/fimmu.2022.918223.
    [22] FengJ, WangJ, WangY, et al. Oxidative stress and lipid peroxidation: prospective associations between ferroptosis and delayed wound healing in diabetic ulcers[J]. Front Cell Dev Biol, 2022, 10: 898657.DOI: 10.3389/fcell.2022.898657.
    [23] HuangK, MiB, XiongY, et al. Angiogenesis during diabetic wound repair: from mechanism to therapy opportunity[J/OL]. Burns Trauma, 2025, 13: tkae052[2025-08-18].https://pubmed.ncbi.nlm.nih.gov/39927093/.DOI: 10.1093/burnst/tkae052.
    [24] CitrinKM, ChaubeB, Fernández-HernandoC, et al. Intracellular endothelial cell metabolism in vascular function and dysfunction[J]. Trends Endocrinol Metab, 2025, 36(8): 744-755.DOI: 10.1016/j.tem.2024.11.004.
    [25] GasekNS, YanP, ZhuJ, et al. Clearance of p21 highly expressing senescent cells accelerates cutaneous wound healing[J]. Nat Aging, 2025, 5(1): 21-27.DOI: 10.1038/s43587-024-00755-4.
    [26] ZhangS, MengN, LiuS, et al. Targeting senescent HDF with the USP7 inhibitor P5091 to enhance DFU wound healing through the p53 pathway[J]. Biochem Biophys Res Commun, 2024, 722: 150149.DOI: 10.1016/j.bbrc.2024.150149.
    [27] SamarawickramaPN, ZhangG, ZhuE, et al. Clearance of senescent cells enhances skin wound healing in type 2 diabetic mice[J]. Theranostics, 2024, 14(14): 5429-5442.DOI: 10.7150/thno.100991.
    [28] McElhinneyK, IrnatenM, O'BrienC. P53 and myofibroblast apoptosis in organ fibrosis[J]. Int J Mol Sci, 2023, 24(7):6737.DOI: 10.3390/ijms24076737.
    [29] MaZ, DingY, DingX, et al. PDK4 rescues high-glucose-induced senescent fibroblasts and promotes diabetic wound healing through enhancing glycolysis and regulating YAP and JNK pathway[J]. Cell Death Discov, 2023, 9(1): 424.DOI: 10.1038/s41420-023-01725-2.
    [30] QinY, WuK, ZhangZ, et al. NLRC3 deficiency promotes cutaneous wound healing due to the inhibition of p53 signaling[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(11): 166518.DOI: 10.1016/j.bbadis.2022.166518.
    [31] JiangG, JiangT, ChenJ, et al. Mitochondrial dysfunction and oxidative stress in diabetic wound[J]. J Biochem Mol Toxicol, 2023, 37(7): e23407.DOI: 10.1002/jbt.23407.
    [32] QinY, LiuH, WuH. Cellular senescence in health, disease, and lens aging[J]. Pharmaceuticals (Basel), 2025, 18(2):244.DOI: 10.3390/ph18020244.
    [33] ChoiH, KangC. Living beyond restriction: LBR promotes cellular immortalization by suppressing genomic instability and senescence[J]. FEBS J, 2024, 291(10): 2091-2093.DOI: 10.1111/febs.17141.
    [34] Mahiny-ShahmohammadyD, HauckL, BilliaF. Defining the molecular underpinnings controlling cardiomyocyte proliferation[J]. Clin Sci (Lond), 2022, 136(12): 911-934.DOI: 10.1042/CS20211180.
    [35] O'ReillyS, MarkiewiczE, IdowuOC. Aging, senescence, and cutaneous wound healing-a complex relationship[J]. Front Immunol, 2024, 15: 1429716.DOI: 10.3389/fimmu.2024.1429716.
    [36] ÅgrenMS, LitmanT, EriksenJO, et al. Gene expression linked to reepithelialization of human skin wounds[J]. Int J Mol Sci, 2022, 23(24):15746.DOI: 10.3390/ijms232415746.
    [37] JacquierEF, KassisA, MarcuD, et al. Phytonutrients in the promotion of healthspan: a new perspective[J]. Front Nutr, 2024, 11: 1409339.DOI: 10.3389/fnut.2024.1409339.
    [38] KanwuguON, GlukharevaTV, DanilovaIG, et al. Natural antioxidants in diabetes treatment and management: prospects of astaxanthin[J]. Crit Rev Food Sci Nutr, 2022, 62(18): 5005-5028.DOI: 10.1080/10408398.2021.1881434.
    [39] 商冠华,田春梅. Nrf2信号通路作为虾青素治疗新靶点的研究进展[J]. 国际医药卫生导报,2024,30(1): 20-24.DOI: 10.3760/cma.j.issn.1007-1245.2024.01.004.
    [40] LvB, XingS, WangZ, et al. NRF2 inhibitors: recent progress, future design and therapeutic potential[J]. Eur J Med Chem, 2024, 279: 116822.DOI: 10.1016/j.ejmech.2024.116822.
  • 图  1  4组人成纤维细胞培养48 h后的活性氧水平 2',7'-二氯二氢荧光素二乙酸酯×100。1A、1B、1C、1D.分别为对照组、高糖组、低虾青素组、高虾青素组,图1B活性氧水平明显高于图1A、1C、1D,图1C活性氧水平明显高于图1D

    注:对照组细胞行常规培养,高糖组细胞用终物质的量浓度30 mmol/L葡萄糖处理,低虾青素组、高虾青素组细胞分别用终物质的量浓度25、50 μmol/L虾青素预处理后再同高糖组处理;绿色荧光表示活性氧

    图  2  蛋白质印迹法检测的4组人成纤维细胞培养48 h后部分衰老相关蛋白表达水平。2A.细胞中p53、磷酸化p53、p21、p16、Rb、磷酸化Rb;2B.细胞中MMP1、MMP3、MMP13

    注:条带上方1~3、4~6、7~9、10~12分别指示对照组、高糖组、低虾青素组、高虾青素组;对照组细胞行常规培养,高糖组细胞用终物质的量浓度30 mmol/L葡萄糖处理,低虾青素组、高虾青素组细胞分别用终物质的量浓度25、50 μmol/L虾青素预处理后再同高糖组处理;MMP为基质金属蛋白酶,GAPDH为3-磷酸甘油醛脱氢酶

    图  3  蛋白质印迹法检测的4组人成纤维细胞培养48 h后细胞质和细胞核中Nrf2蛋白表达水平。3A.细胞质;3B.细胞核

    注:Nrf2为核转录因子红系2相关因子2;条带上方1~3、4~6、7~9、10~12分别指示对照组、高糖组、低虾青素组、高虾青素组;对照组细胞行常规培养,高糖组细胞用终物质的量浓度30 mmol/L葡萄糖处理,低虾青素组、高虾青素组细胞分别用终物质的量浓度25、50 μmol/L虾青素预处理后再同高糖组处理

    图  4  蛋白质印迹法检测的4组人成纤维细胞培养48 h后部分衰老相关蛋白表达水平。4A.细胞中p53、磷酸化p53、p21、p16、Rb、磷酸化Rb;4B.细胞中MMP1、MMP3、MMP13

    注:条带上方1~3、4~6、7~9、10~12分别指示对照组、高糖组、高虾青素组、高虾青素+ML385组;对照组细胞行常规培养,高糖组细胞用终物质的量浓度30 mmol/L葡萄糖处理,高虾青素组和高虾青素+ML385组细胞分别用终物质的量浓度50 μmol/L虾青素、终物质的量浓度50 μmol/L虾青素+10 μmol/L ML385预处理后再同高糖组处理;MMP为基质金属蛋白酶,GAPDH为3-磷酸甘油醛脱氢酶

    图  5  蛋白质印迹法检测的4组人成纤维细胞培养48 h后细胞质和细胞核中Nrf2蛋白表达水平。5A.细胞质;5B.细胞核

    注:Nrf2为核转录因子红系2相关因子2;条带上方1~3、4~6、7~9、10~12分别指示对照组、高糖组、高虾青素组、高虾青素+ML385组;对照组细胞行常规培养,高糖组细胞用终物质的量浓度30 mmol/L葡萄糖处理,高虾青素组和高虾青素+ML385组细胞分别用终物质的量浓度50 μmol/L虾青素、终物质的量浓度50 μmol/L虾青素+10 μmol/L ML385预处理后再同高糖组处理

    Table  1.   4组人成纤维细胞培养48 h后氧化损伤相关指标水平比较(x¯±s

    组别样本数活性氧丙二醛谷胱甘肽SODCATGSH-Px
    对照组33.3±0.64.0±0.622.0±3.130.3±4.637.0±1.3181±12
    高糖组329.6±1.011.4±1.17.8±2.311.3±1.015.4±3.374±4
    低虾青素组320.8±1.47.7±0.614.4±0.617.5±1.123.4±2.4108±9
    高虾青素组37.6±0.74.7±0.421.7±3.024.4±2.736.4±0.8173±8
    F473.3062.4822.7427.3969.06105.40
    P<0.001<0.001<0.001<0.001<0.001<0.001
    P1<0.001<0.001<0.001<0.001<0.001<0.001
    P2<0.0010.0020.0660.1440.0130.008
    P3<0.001<0.001<0.0010.002<0.001<0.001
    P4<0.0010.0070.0400.091<0.001<0.001
    注:对照组细胞行常规培养,高糖组细胞用终物质的量浓度30 mmol/L葡萄糖处理,低虾青素组、高虾青素组细胞分别用终物质的量浓度25、50 μmol/L虾青素预处理后再同高糖组处理;SOD为超氧化物歧化酶,CAT为过氧化氢酶,GSH-Px为谷胱甘肽过氧化物酶;F值、P值为组间各指标总体比较所得;P1值、P2值、P3值、P4值分别为对照组与高糖组、高糖组与低虾青素组、高糖组与高虾青素组、低虾青素组与高虾青素组各指标比较所得
    下载: 导出CSV

    Table  2.   4组人成纤维细胞培养48 h后部分衰老相关蛋白表达水平比较(x¯±s

    组别样本数p53p21磷酸化p53p16Rb磷酸化RbMMP1MMP3MMP13
    对照组31.00±0.051.00±0.081.00±0.261.00±0.121.000±0.1271.00±0.121.00±0.191.00±0.291.00±0.13
    高糖组34.39±0.175.30±0.156.95±0.113.71±0.361.915±0.1860.36±0.052.71±0.452.37±0.132.20±0.23
    低虾青素组33.29±0.243.53±0.103.69±0.233.61±0.301.838±0.1540.96±0.042.00±0.351.69±0.371.38±0.27
    高虾青素组33.35±0.571.01±0.450.94±0.141.05±0.170.868±0.1900.87±0.050.88±0.381.13±0.331.08±0.11
    F59.29221.48630.87106.6432.5051.8717.6613.4923.52
    P<0.001<0.001<0.001<0.001<0.001<0.001<0.0010.002<0.001
    P1<0.001<0.001<0.001<0.001<0.001<0.0010.0020.003<0.001
    P20.018<0.001<0.001>0.999>0.999<0.0010.2460.1270.005
    P30.025<0.001<0.001<0.001<0.001<0.0010.0010.005<0.001
    P4>0.999<0.001<0.001<0.001<0.0010.8700.0300.3050.601
    注:对照组细胞行常规培养,高糖组细胞用终物质的量浓度30 mmol/L葡萄糖处理,低虾青素组、高虾青素组细胞分别用终物质的量浓度25、50 μmol/L的虾青素预处理后再同高糖组处理;F值、P值为组间各指标总体比较所得;P1值、P2值、P3值、P4值分别为对照组与高糖组、高糖组与低虾青素组、高糖组与高虾青素组、低虾青素组与高虾青素组各指标比较所得;MMP为基质金属蛋白酶
    下载: 导出CSV

    Table  3.   4组人成纤维细胞培养48 h后细胞质和细胞核中Nrf2蛋白表达水平比较(x¯±s

    组别样本数细胞质中Nrf2细胞核中Nrf2
    对照组31.000±0.1471.000±0.018
    高糖组31.717±0.1440.585±0.097
    低虾青素组30.906±0.2060.795±0.056
    高虾青素组30.397±0.0771.139±0.141
    F39.0421.59
    P<0.001<0.001
    P10.0020.003
    P20.0010.130
    P3<0.001<0.001
    P40.0200.010
    注:对照组细胞行常规培养,高糖组细胞用终物质的量浓度30 mmol/L葡萄糖处理,低虾青素组、高虾青素组细胞分别用终物质的量浓度25、50 μmol/L虾青素预处理后再同高糖组处理;Nrf2为核转录因子红系2相关因子2;F值、P值为组间各指标总体比较所得;P1值、P2值、P3值、P4值分别为对照组与高糖组、高糖组与低虾青素组、高糖组与高虾青素组、低虾青素组与高虾青素组各指标比较所得
    下载: 导出CSV

    Table  4.   4组人成纤维细胞培养48 h后部分衰老相关蛋白表达水平比较(x¯±s

    组别样本数p53p21磷酸化p53p16Rb磷酸化RbMMP1MMP3MMP13
    对照组31.00±0.071.00±0.211.00±0.031.00±0.261.000±0.0611.00±0.101.00±0.271.00±0.121.00±0.12
    高糖组33.31±0.367.30±1.042.46±0.122.97±0.134.175±0.0700.38±0.045.24±0.305.14±0.124.53±0.29
    高虾青素组32.16±0.562.60±0.100.90±0.091.29±0.271.036±0.0080.91±0.091.54±0.221.55±0.371.24±0.34
    高虾青素+ML385组34.97±0.296.54±0.772.15±0.402.27±0.223.371±0.4890.40±0.104.10±0.433.82±1.562.75±0.81
    F63.5564.5441.7748.19128.0042.20122.5017.2636.44
    P<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001
    P1<0.001<0.001<0.001<0.001<0.001<0.001<0.0010.001<0.001
    P20.031<0.001<0.001<0.001<0.001<0.001<0.0010.004<0.001
    P3<0.001<0.001<0.0010.004<0.001<0.001<0.0010.0530.025
    注:对照组细胞行常规培养,高糖组细胞用终物质的量浓度30 mmol/L葡萄糖处理,高虾青素组和高虾青素+ML385组细胞分别用终物质的量浓度50 μmol/L虾青素、终物质的量浓度50 μmol/L虾青素+10 μmol/L ML385预处理后再同高糖组处理;F值、P值为组间各指标总体比较所得;P1值、P2值、P3值分别为对照组与高糖组、高糖组与高虾青素组、高虾青素组与高虾青素+ML385组各指标比较所得;MMP为基质金属蛋白酶
    下载: 导出CSV

    Table  5.   4组人成纤维细胞培养48 h后细胞质和细胞核中Nrf2蛋白表达水平比较(x¯±s

    组别样本数细胞质中Nrf2细胞核中Nrf2
    对照组31.000±0.1721.000±0.030
    高糖组31.983±0.3110.931±0.187
    高虾青素组30.917±0.2751.494±0.129
    高虾青素+ML385组31.513±0.0770.969±0.103
    F14.1913.34
    P0.0010.002
    P10.0040.999
    P20.0030.004
    P30.0750.005
    注:对照组细胞行常规培养,高糖组细胞用终物质的量浓度30 mmol/L葡萄糖处理,高虾青素组和高虾青素+ML385组细胞分别用终物质的量浓度50 μmol/L虾青素、终物质的量浓度50 μmol/L虾青素+10 μmol/L ML385预处理后再同高糖组处理;Nrf2为核转录因子红系2相关因子2;F值、P值为组间各指标总体比较所得;P1值、P2值、P3值分别为对照组与高糖组、高糖组与高虾青素组、高虾青素组与高虾青素+ML385组各指标比较所得
    下载: 导出CSV
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  13
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-09

目录

    /

    返回文章
    返回