留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外泌体多组学分析技术在烧伤脓毒症预警与诊断中应用的研究进展

陈宇曦 罗亮 蒋诗情 王耘川 胡大海

陈宇曦, 罗亮, 蒋诗情, 等. 外泌体多组学分析技术在烧伤脓毒症预警与诊断中应用的研究进展[J]. 中华烧伤与创面修复杂志, 2025, 41(7): 698-703. Doi: 10.3760/cma.j.cn501225-20250512-00222
引用本文: 陈宇曦, 罗亮, 蒋诗情, 等. 外泌体多组学分析技术在烧伤脓毒症预警与诊断中应用的研究进展[J]. 中华烧伤与创面修复杂志, 2025, 41(7): 698-703. Doi: 10.3760/cma.j.cn501225-20250512-00222
Chen Yuxi, Luo Liang, Jiang Shiqing, et al. Research advances on the application of exosomal multi-omics analysis technology in warning and diagnosis of burn sepsis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2025, 41(7): 698-703. Doi: 10.3760/cma.j.cn501225-20250512-00222
Citation: Chen Yuxi, Luo Liang, Jiang Shiqing, et al. Research advances on the application of exosomal multi-omics analysis technology in warning and diagnosis of burn sepsis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2025, 41(7): 698-703. Doi: 10.3760/cma.j.cn501225-20250512-00222

外泌体多组学分析技术在烧伤脓毒症预警与诊断中应用的研究进展

doi: 10.3760/cma.j.cn501225-20250512-00222
基金项目: 

国家自然科学基金重点项目 81530064

陕西省重点研发计划项目 2023-ZDLSF-24

详细信息
    通讯作者:

    胡大海, Email:hudahai@fmmu.edu.cn

Research advances on the application of exosomal multi-omics analysis technology in warning and diagnosis of burn sepsis

Funds: 

Key Program of National Natural Science Foundation of China 81530064

Shaanxi Provincial Key Research and Development Program of China 2023-ZDLSF-24

More Information
  • 摘要: 作为导致烧伤患者死亡的主要原因之一, 脓毒症的早期预警与诊断面临挑战, 这主要源于其非特异性临床表现和传统生物标志物检测效能的局限性。作为细胞间信息传递的重要载体, 外泌体及其内含物(RNA、蛋白质、代谢物)可反映机体病理生理状态, 在疾病诊断领域备受关注。该文旨在综述外泌体多组学(转录组学、蛋白质组学、代谢组学等)分析技术在烧伤脓毒症预警和诊断中应用的研究进展, 探讨其在揭示疾病机制、筛选特异性早期生物标志物及结合新兴生物信息学技术方面的应用潜力, 以期为实现烧伤脓毒症的精准诊断和治疗提供新的策略和方向。

     

  • 参考文献(49)

    [1] Font MD, Thyagarajan B, Khanna AK. Sepsis and septic shock-basics of diagnosis, pathophysiology and clinical decision making[J]. Med Clin North Am, 2020, 104(4): 573-585. DOI: 10.1016/j.mcna.2020.02.011.
    [2] Ehizogie E, Maghari I, Lo S, et al. Hidradenitis suppurativa, systemic inflammatory response syndrome and sepsis: a database study[J]. Br J Dermatol, 2024, 191(3): 451-453. DOI: 10.1093/bjd/ljae221.
    [3] Strunk T, Molloy EJ, Mishra A, et al. Neonatal bacterial sepsis [J]. Lancet, 2024, 404(10449): 277-293. DOI: 10.1016/S0140-6736(24)00495-1.
    [4] Meyer NJ, Prescott HC. Sepsis and septic shock[J]. N Engl J Med, 2024, 391(22): 2133-2146. DOI: 10.1056/NEJMra2403213.
    [5] Zhang P, Zou B, Liou YC, et al. The pathogenesis and diagnosis of sepsis post burn injury[J/OL]. Burns Trauma, 2021, 9: tkaa047[2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/33654698/. DOI: 10.1093/burnst/tkaa047.
    [6] Hancock REW, An A, dos Santos CC, et al. Deciphering sepsis: transforming diagnosis and treatment through systems immunology[J]. Front Sci, 2025, 2: 1469417. DOI: 10.3389/fsci.2024.1469417.
    [7] Freund Y, Lemachatti N, Krastinova E, et al. Prognostic accuracy of sepsis-3 criteria for in-hospital mortality among patients with suspected infection presenting to the emergency department[J]. JAMA, 2017, 317(3): 301-308. DOI: 10.1001/jama.2016.20329.
    [8] Palmieri TL, Heard J. Biomarkers of sepsis in burn injury: an update[J/OL]. Burns Trauma, 2025, 13: tkae080 [2025-05-12]. https://pubmed.ncbi.nlm.nih.gov/39822649/. DOI: 10.1093/burnst/tkae080.
    [9] Liu J, Ren L, Li S, et al. The biology, function, and applications of exosomes in cancer[J]. Acta Pharm Sin B, 2021, 11(9): 2783-2797. DOI: 10.1016/j.apsb.2021.01.001.
    [10] Griss J, Viteri G, Sidiropoulos K, et al. ReactomeGSA - efficient multi-omics comparative pathway analysis[J]. Mol Cell Proteomics, 2020, 19(12): 2115-2125. DOI: 10.1074/mcp.TIR120.002155.
    [11] 唐远洋, 罗高兴, 贺伟峰. 严重烧伤感染后细胞因子风暴发生发展机制浅析[J]. 四川大学学报(医学版), 2021, 52(1): 16-21. DOI: 10.12182/20210160206.
    [12] 李欣, 王浩, 侯小倩. ICU烧伤感染患者并发脓毒症的临床特征及sCD163、Presepsin、GPBB诊断价值[J]. 中华医院感染学杂志, 2025, 35(2): 225-229. DOI: 10.11816/cn.ni.2025-240549.
    [13] Yang Y, Liu L, Guo Z, et al. Investigation and assessment of neutrophil dysfunction early after severe burn injury[J]. Burns, 2021, 47(8): 1851-1862. DOI: 10.1016/j.burns.2021.02.004.
    [14] 唐浩然, 周彪, 巴特, 等. 严重烧伤后脓毒症早期诊断相关生物标记物的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2025, 20(1): 70-74. DOI: 10.3877/cma.j.issn.1673-9450.2025.01.011.
    [15] Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI: 10.1001/jama.2016.0287.
    [16] 梁琦强, 韩春茂, 黄曼. 烧伤脓毒症诊断: 脓毒症3.0适用吗[J]. 中华急诊医学杂志, 2020, 29(12): 1509-1514. DOI: 10.3760/cma.j.issn.1671-0282.2020.12.002.
    [17] 曾茁, 彭毅志, 袁志强. 脓毒症生物标志物的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(7): 679-684. DOI: 10.3760/cma.j.cn501225-20230320-00086.
    [18] Cabral L, Afreixo V, Almeida L, et al. The use of procalcitonin (PCT) for diagnosis of sepsis in burn patients: a meta-analysis[J]. PLoS One, 2016, 11(12): e0168475. DOI: 10.1371/journal.pone.0168475.
    [19] Bloos F, Trips E, Nierhaus A, et al. Effect of sodium selenite administration and procalcitonin-guided therapy on mortality in patients with severe sepsis or septic shock: a randomized clinical trial[J]. JAMA Intern Med, 2016, 176(9): 1266-1276. DOI: 10.1001/jamainternmed.2016.2514.
    [20] Bolanaki M, Winning J, Slagman A, et al. Biomarkers improve diagnostics of sepsis in adult patients with suspected organ dysfunction based on the quick sepsis-related organ failure assessment (qSOFA) score in the emergency department[J]. Crit Care Med, 2024, 52(6): 887-899. DOI: 10.1097/CCM.0000000000006216.
    [21] Yu Y, Wu W, Dong Y, et al. C-reactive protein-to-albumin ratio predicts sepsis and prognosis in patients with severe burn injury[J]. Mediators Inflamm, 2021, 2021: 6621101. DOI: 10.1155/2021/6621101.
    [22] Wu H, Cao T, Ji T, et al. Predictive value of the neutrophil-to-lymphocyte ratio in the prognosis and risk of death for adult sepsis patients: a meta-analysis[J]. Front Immunol, 2024, 15: 1336456. DOI: 10.3389/fimmu.2024.1336456.
    [23] Bordeanu-Diaconescu EM, Grosu-Bularda A, Frunza A, et al. Diagnostic and prognostic value of thrombocytopenia in severe burn injuries[J]. Diagnostics (Basel), 2024, 14(6): 582. DOI: 10.3390/diagnostics14060582.
    [24] Shen K, Wang X, Wang Y, et al. miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury[J]. Redox Biol, 2023, 62: 102655. DOI: 10.1016/j.redox.2023.102655.
    [25] Mascharak S, Talbott HE, Januszyk M, et al. Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing[J]. Cell Stem Cell, 2022, 29(2): 315-327. e6. DOI: 10.1016/j.stem.2021.12.011.
    [26] Huang H, Zhang M, Lu H, et al. Identification and evaluation of plasma exosome RNA biomarkers for non-invasive diagnosis of hepatocellular carcinoma using RNA-seq[J]. BMC Cancer, 2024, 24(1): 1552. DOI: 10.1186/s12885-024-13332-0.
    [27] 李兴, 宋春梅, 卢文辉, 等. 脓毒症患者外周血中lncRNA和miRNA表达谱及功能分析[J]. 中华急诊医学杂志, 2024, 33(1): 95-100. DOI: 10.3760/cma.j.issn.1671-0282.2024.01.016.
    [28] 郦弈帆, 张丹颖, 王梦晴, 等. PD-1和PD-L1在脓毒症免疫反应中的研究进展[J]. 国际生物医学工程杂志, 2023, 46(3): 270-274. DOI: 10.3760/cma.j.cn121382-20230308-00314.
    [29] Tian C, Liu J, Di X, et al. Exosomal hsa_circRNA_104484 and hsa_circRNA_104670 may serve as potential novel biomarkers and therapeutic targets for sepsis[J]. Sci Rep, 2021, 11(1): 14141. DOI: 10.1038/s41598-021-93246-0.
    [30] Li L, Huang L, Huang C, et al. The multiomics landscape of serum exosomes during the development of sepsis[J]. J Adv Res, 2022, 39: 203-223. DOI: 10.1016/j.jare.2021.11.005.
    [31] Jiang K, Yang J, Guo S, et al. Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation[J]. Mol Ther, 2019, 27(10): 1758-1771. DOI: 10.1016/j.ymthe.2019.07.003.
    [32] 郭婷婷, 王坤, 王小烨, 等. 组学用于脓毒症诊断、治疗及预后评估的研究进展[J]. 中华麻醉学杂志, 2024, 44(6): 758-761. DOI: 10.3760/cma.j.cn131073.20240409.00624.
    [33] 叶银凤. 肺泡上皮细胞过度内质网应激释放外泌体Tenascin-C在脓毒症急性肺损伤中的机制研究[D]. 深圳: 南方医科大学, 2023.
    [34] Stanaway IB, Morrell ED, Mabrey FL, et al. Urinary proteomics identifies distinct immunological profiles of sepsis associated AKI sub-phenotypes[J]. Crit Care, 2024, 28(1): 419. DOI: 10.1186/s13054-024-05202-9.
    [35] 丁泓帆, 郑兴锋, 夏照帆. 代谢组学在危重烧创伤救治中的应用研究进展[J]. 中华烧伤杂志, 2019, 35(6): 467-471. DOI: 10.3760/cma.j.issn.1009-2587.2019.06.014.
    [36] McCann MR, George De la Rosa MV, Rosania GR, et al. L-carnitine and acylcarnitines: mitochondrial biomarkers for precision medicine[J]. Metabolites, 2021, 11(1) : 51. DOI: 10.3390/metabo11010051.
    [37] 白晓智, 陶克, 刘洋, 等. 人脂肪间充质干细胞外泌体对脓毒症小鼠急性肺损伤的影响及其机制[J]. 中华烧伤与创面修复杂志, 2024, 40(12): 1132-1142. DOI: 10.3760/cma.j.cn501225-20240927-00355.
    [38] Pandey S. Advances in metabolomics in critically ill patients with sepsis and septic shock[J]. Clin Exp Emerg Med, 2025, 12(1): 4-15. DOI: 10.15441/ceem.24.211.
    [39] Li Q, Sun M, Zhou Q, et al. Integrated analysis of multi-omics data reveals T cell exhaustion in sepsis[J]. Front Immunol, 2023, 14: 1110070. DOI: 10.3389/fimmu.2023.1110070.
    [40] Huang P, Liu Y, Li Y, et al. Metabolomics- and proteomics-based multi-omics integration reveals early metabolite alterations in sepsis-associated acute kidney injury[J]. BMC Med, 2025, 23(1): 79. DOI: 10.1186/s12916-025-03920-7.
    [41] Xu P, Tao Z, Zhang C. Integrated multi-omics and artificial intelligence to explore new neutrophils clusters and potential biomarkers in sepsis with experimental validation[J]. Front Immunol, 2024, 15: 1377817. DOI: 10.3389/fimmu.2024.1377817.
    [42] Li Z, Huang B, Yi W, et al. Identification of potential early diagnostic biomarkers of sepsis[J]. J Inflamm Res, 2021, 14: 621-631. DOI: 10.2147/JIR.S298604.
    [43] 徐雁苓, 刘浩, 贾文梅. 基于基因表达综合数据库鉴定脓毒症的关键致病基因及潜在发病机制研究[J]. 中国医师进修杂志, 2021, 44(4): 372-375. DOI: 10.3760/cma.j.cn115455-20201015-01383.
    [44] 桑珍珍, 杨栋梁, 饶欣, 等. 参与脓毒症的关键生物标志物和免疫相关途径鉴定[J]. 临床急诊杂志, 2023, 24(6): 315-322. DOI: 10.13201/j.issn.1009-5918.2023.06.008.
    [45] Zeng X, Feng J, Yang Y, et al. Screening of key genes of sepsis and septic shock using bioinformatics analysis[J]. J Inflamm Res, 2021, 14: 829-841. DOI: 10.2147/JIR.S301663.
    [46] Xu F, Tan X, Wang J, et al. Cell-free DNA predicts all-cause mortality of sepsis-induced acute kidney injury[J]. Ren Fail, 2024, 46(1): 2273422. DOI: 10.1080/0886022X.2023.2273422.
    [47] Mi Y, Burnham KL, Charles PD, et al. High-throughput mass spectrometry maps the sepsis plasma proteome and differences in patient response[J]. Sci Transl Med, 2024, 16(750): eadh0185. DOI: 10.1126/scitranslmed.adh0185.
    [48] Ruiz-Sanmartín A, Ribas V, Suñol D, et al. Characterization of a proteomic profile associated with organ dysfunction and mortality of sepsis and septic shock[J]. PLoS One, 2022, 17(12): e0278708. DOI: 10.1371/journal.pone.0278708.
    [49] Zheng H, Zhao J, Wang X, et al. Integrated pipeline of rapid isolation and analysis of human plasma exosomes for cancer discrimination based on deep learning of MALDI-TOF MS fingerprints[J]. Anal Chem, 2022, 94(3): 1831-1839. DOI: 10.1021/acs.analchem.1c04762.
  • 加载中
计量
  • 文章访问数:  163
  • HTML全文浏览量:  55
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-12

目录

    /

    返回文章
    返回