留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨基胍对急性肝损伤小鼠的作用及其机制

肖红艳 苏珊 安嘉伟 刘国臣 陈玉平 陈意 朱俊宇 欧阳一彬

肖红艳, 苏珊, 安嘉伟, 等. 氨基胍对急性肝损伤小鼠的作用及其机制[J]. 中华烧伤与创面修复杂志, 2026, 42(2): 1-10. DOI: 10.3760/cma.j.cn501225-20251016-00431.
引用本文: 肖红艳, 苏珊, 安嘉伟, 等. 氨基胍对急性肝损伤小鼠的作用及其机制[J]. 中华烧伤与创面修复杂志, 2026, 42(2): 1-10. DOI: 10.3760/cma.j.cn501225-20251016-00431.
Xiao Hongyan,Su Shan,An Jiawei,et al.Effects and mechanism of aminoguanidine on acute liver injury in mice[J].Chin J Burns Wounds,2026,42(2):1-10.DOI: 10.3760/cma.j.cn501225-20251016-00431.
Citation: Xiao Hongyan,Su Shan,An Jiawei,et al.Effects and mechanism of aminoguanidine on acute liver injury in mice[J].Chin J Burns Wounds,2026,42(2):1-10.DOI: 10.3760/cma.j.cn501225-20251016-00431.

氨基胍对急性肝损伤小鼠的作用及其机制

doi: 10.3760/cma.j.cn501225-20251016-00431
基金项目: 

海南省卫生健康科技创新联合项目 WSJK2025ZD21

详细信息
    通讯作者:

    欧阳一彬,Email:55922527@qq.com

Effects and mechanism of aminoguanidine on acute liver injury in mice

Funds: 

Joint Program on Health Science & Technology Innovation of Hainan Province WSJK2025ZD21

More Information
  • 摘要:   目的  探讨氨基胍对急性肝损伤小鼠的作用及其机制,为烧伤急性肝损伤和研究奠定理论基础。  方法  该研究采用成组设计为实验研究。取60只6~8周龄雄性C57BL/6J小鼠,按随机数字表法分为空白对照组、模型组、氨基胍对照组、氨基胍干预组,每组15只。模型组和氨基胍干预组小鼠均通过腹腔注射内毒素/脂多糖+D-氨基半乳糖诱导急性肝损伤进行造模,其中氨基胍干预组小鼠在造模12 h前经腹腔注射氨基胍;氨基胍对照组小鼠仅经腹腔注射氨基胍;空白对照组小鼠经腹腔注射的磷酸盐缓冲液。造模后6 h,采用苏木精-伊红染色检测空白对照组、模型组、氨基胍干预组小鼠肝组织的病理情况;按照试剂盒说明书,采用酶标仪检测空白对照组、模型组、氨基胍干预组小鼠血清中天冬氨酸氨基转移酶(AST)、丙氨酸氨基转移酶(ALT)水平及肝组织中丙二醛、谷胱甘肽和铁离子含量;采用原位末端标记染色法检测空白对照组、模型组、氨基胍干预组小鼠肝组织中细胞凋亡情况;采用实时荧光定量反转录PCR法检测空白对照组、模型组、氨基胍对照组、氨基胍干预组小鼠肝组织中一氧化氮合酶2(NOS2)、白细胞介素(IL)-18、IL-、NOD样受体热蛋白结构域相关蛋白3(NLRP3)等炎症基因的mRNA水平;采用蛋白质印迹法检测空白对照组、模型组、氨基胍对照组、氨基胍干预组小鼠肝组织中铁死亡标志蛋白酰基辅酶A合成酶长链家族成员4(ACSL4)、谷胱甘肽过氧化物酶4(GPX4)及炎症相关通路蛋白NLRP3的相对表达量及磷酸化P65(p-P65)与P65比值。  结果  造模后6 h,空白对照组小鼠肝小叶结构完整,肝细胞索排列规整,无炎症细胞浸润及肝细胞坏死现象;模型组小鼠肝小叶结构异常,肝细胞索排列紊乱,肝细胞坏死,炎症细胞大量浸润,肝窦扩张充血;氨基胍干预组小鼠病理损伤程度介于空白对照组与模型组之间。造模后6 h,与空白对照组相比,模型组小鼠血清中AST、ALT水平均明显升高(P<0.05);与模型组相比,氨基胍干预组小鼠血清中AST、ALT水平均明显下降(P<0.05)。造模后6 h,与空白对照组相比,模型组小鼠肝组织中丙二醛、铁离子含量均明显升高(P<0.05),谷胱甘肽含量明显降低(P<0.05);与模型组相比,氨基胍干预组小鼠肝组织中丙二醛含量明显降低(P<0.05),谷胱甘肽含量明显升高(P<0.05)。造模后6 h,模型组小鼠肝组织中凋亡细胞占比为26.93%,明显高于空白对照组的0.43%(P<0.05)和氨基胍干预组的0.37%(P<0.05)。造模后6 h,空白对照组与氨基胍对照组小鼠肝组织中NOS2IL-18IL-NLRP3的mRNA水平比较,差异均无统计学意义(P>0.05);与空白对照组相比,模型组小鼠肝组织中前述基因的mRNA水平均明显升高(P<0.05);与模型组相比,氨基胍干预组小鼠肝组织中前述基因的mRNA水平均明显降低(P<0.05)。造模后6 h,空白对照组与氨基胍对照组小鼠肝组织中ACSL4、NLRP3、GPX4的相对表达量及p-P65与P65比值比较,差异均无统计学意义(P>0.05);与空白对照组相比,模型组小鼠肝组织中ACSL4、NLRP3的相对表达量及p-P65与P65比值均明显升高(P<0.05),GPX4的相对表达量明显降低(P<0.05);与模型组相比,氨基胍干预组小鼠肝组织中ACSL4、NLRP3的相对表达量及p-P65与P65比值均明显下降(P<0.05),GPX4的相对表达量明显升高(P<0.05)。  结论  氨基胍能够通过下调炎症反应和抑制铁死亡,改善肝功能,减轻内毒素/脂多糖+D-氨基半乳糖诱导的小鼠急性肝损伤。

     

  • 参考文献(40)

    [1] HuangS, WangY, XieS, et al. Hepatic TGFβr1 deficiency attenuates lipopolysaccharide/D-galactosamine-induced acute liver failure through inhibiting GSK3β-Nrf2-mediated hepatocyte apoptosis and ferroptosis[J]. Cell Mol Gastroenterol Hepatol, 2022,13(6):1649-1672. DOI: 10.1016/j.jcmgh.2022.02.009.
    [2] WangR, ChenY, HanJ, et al. Selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 as a rapid-acting therapy for advanced acute liver failure[J]. Nat Commun, 2024,15(1):10690. DOI: 10.1038/s41467-024-55295-7.
    [3] YuC, ChenP, MiaoL, et al. The role of the NLRP3 inflammasome and programmed cell death in acute liver injury[J]. Int J Mol Sci, 2023,24(4) :3067. DOI: 10.3390/ijms24043067.
    [4] ZhangH, GaoM, WangH, et al. Atractylenolide I prevents acute liver failure in mouse by regulating M1 macrophage polarization[J]. Sci Rep, 2025,15(1):4015. DOI: 10.1038/s41598-025-86977-x.
    [5] GaoZ, DaiH, ZhangQ, et al. Hydroxytyrosol alleviates acute liver injury by inhibiting the TNF-α/PI3K/AKT signaling pathway via targeting TNF-α signaling[J]. Int J Mol Sci, 2024,25(23) :12844. DOI: 10.3390/ijms252312844.
    [6] YangW, BianS, LiuL. Urantide alleviates lipopolysaccharide/D-galactosamine-induced acute liver failure through upregulating carboxylesterase1f in mice[J]. Front Cell Infect Microbiol, 2025,15:1653725. DOI: 10.3389/fcimb.2025.1653725.
    [7] LiuY, ZhaoJ, CongW, et al. Alpinetin pretreatment prevents lipopolysaccharide/D-galactosamine-induced acute liver injury in mice by inhibiting ferroptosis via the Nrf2/SLC7A11/GPX4 pathway[J]. Sci Rep, 2025,15(1):40065. DOI: 10.1038/s41598-025-26588-8.
    [8] LongL, ZhangM, QinH, et al. Isorhamnetin protects against D-GalN/LPS-induced acute liver injury in mice through anti-oxidative stress, anti-inflammation, and anti-apoptosis[J]. BMC Complement Med Ther, 2025,25(1):297. DOI: 10.1186/s12906-025-04949-0.
    [9] GuoY, GuoW, ChenH, et al. Mechanisms of sepsis-induced acute liver injury: a comprehensive review[J]. Front Cell Infect Microbiol, 2025,15:1504223. DOI: 10.3389/fcimb.2025.1504223.
    [10] CaiX, DengJ, WangL, et al. Gallium-doped MXene nanozymes protect liver through multi-death pathway blockade and hepatocyte regeneration[J]. Adv Sci (Weinh), 2026:e09079. DOI: 10.1002/advs.202509079.
    [11] ZhengS, GaoY, CaoH, et al. Sophoricoside ameliorates LPS/D-GalN-induced acute liver failure by inhibiting ferroptosis via activation of the Nrf2/GPX4 signaling pathway[J]. Phytomedicine, 2026,150:157716. DOI: 10.1016/j.phymed.2025.157716.
    [12] CormanB, DuriezM, PoitevinP, et al. Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy[J]. Proc Natl Acad Sci U S A, 1998,95(3):1301-1306. DOI: 10.1073/pnas.95.3.1301.
    [13] ThornalleyPJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts[J]. Arch Biochem Biophys, 2003,419(1):31-40. DOI: 10.1016/j.abb.2003.08.013.
    [14] KosticT, PopovićD, PerisicZ, et al. The hepatoprotective effect of aminoguanidine in acute liver injury caused by CCl4 in rats[J]. Biomed Pharmacother, 2022,156:113918. DOI: 10.1016/j.biopha.2022.113918.
    [15] PatrycyM, JanickaM, KaucA, et al. The role of nitric oxide in HSV-1 infection: the use of an inducible nitric synthase inhibitor aminoguanidine to treat neuroinflammation[J]. Microorganisms, 2025,13(10) :2222. DOI: 10.3390/microorganisms13102222.
    [16] TIdSilva, TdCFernandes, de Sá MoreiraET, et al. Role of Nitric oxide synthase Ⅱ in cognitive impairment due to experimental cerebral malaria[J]. Nitric Oxide, 2024,153:41-49. DOI: 10.1016/j.niox.2024.10.002.
    [17] Díez-FernándezC, SanzN, AlvarezAM, et al. Influence of aminoguanidine on parameters of liver injury and regeneration induced in rats by a necrogenic dose of thioacetamide[J]. Br J Pharmacol, 1998,125(1):102-108. DOI: 10.1038/sj.bjp.0702014.
    [18] MahmoudMF, ZakariaS, FahmyA. Can chronic nitric oxide inhibition improve liver and renal dysfunction in bile duct ligated rats?[J]. Adv Pharmacol Sci, 2015,2015:298792. DOI: 10.1155/2015/298792.
    [19] YangS, KuangG, ZhangL, et al. Mangiferin attenuates LPS/D-GalN-induced acute liver injury by promoting HO-1 in kupffer cells[J]. Front Immunol, 2020,11:285. DOI: 10.3389/fimmu.2020.00285.
    [20] FengJ, YeS, HaiB, et al. RNF115/BCA2 deficiency alleviated acute liver injury in mice by promoting autophagy and inhibiting inflammatory response[J]. Cell Death Dis, 2023,14(12):855. DOI: 10.1038/s41419-023-06379-7.
    [21] 陈立, 李东良. 免疫检查点抑制剂相关肝损伤临床诊治的若干问题与思考[J]. 中华肝脏病杂志,2025,33(8):806-810.DOI: 10.3760/cma.j.cn501113-20240103-00005.
    [22] Rastegar-MoghaddamSH, KiumarsiZ, MiraniA, et al. Aminoguanidine improved liver function and attenuated oxidative stress in hypothyroid rats by propylthiouracil[J]. Adv Biomed Res, 2025,14:64. DOI: 10.4103/abr.abr_538_24.
    [23] PastenC, LozanoM, RoccoJ, et al. Aminoguanidine prevents the oxidative stress, inhibiting elements of inflammation, endothelial activation, mesenchymal markers, and confers a renoprotective effect in renal ischemia and reperfusion injury[J]. Antioxidants (Basel), 2021,10(11):1724.DOI: 10.3390/antiox10111724.
    [24] AhmedAF, MahmoudMF, OufMA, et al. Aminoguanidine potentiates the hepatoprotective effect of silymarin in CCL4 treated rats[J]. Ann Hepatol, 2011,10(2):207-215.
    [25] 徐小惠,冯金梅,罗颖,等. NDUFA13过表达可减轻 CCl4诱导的小鼠肝纤维化:基于抑制NLRP3活化[J]. 南方医科大学学报, 2024,44(2):201-209. DOI: 10.12122/j.issn.1673-4254.2024.02.01.
    [26] MaY, SongX, MaT, et al. Aminoguanidine inhibits IL-1β-induced protein expression of iNOS and COX-2 by blocking the NF-κB signaling pathway in rat articular chondrocytes[J]. Exp Ther Med, 2020,20(3):2623-2630. DOI: 10.3892/etm.2020.9021.
    [27] 刘潇, 蒙健林, 王明刚, 等. 解毒化瘀升散方抑制NLRP3信号通路缓解慢加急性肝衰竭大鼠炎症损伤的实验研究[J]. 中华肝脏病杂志,2024,32(4):354-362.DOI: 10.3760/cma.j.cn501113-20230816-00060.
    [28] EkongU, ZengS, DunH, et al. Blockade of the receptor for advanced glycation end products attenuates acetaminophen-induced hepatotoxicity in mice[J]. J Gastroenterol Hepatol, 2006,21(4):682-688. DOI: 10.1111/j.1440-1746.2006.04225.x.
    [29] ZengS, FeirtN, GoldsteinM, et al. Blockade of receptor for advanced glycation end product (RAGE) attenuates ischemia and reperfusion injury to the liver in mice[J]. Hepatology, 2004,39(2):422-432. DOI: 10.1002/hep.20045.
    [30] GoodwinM, HerathC, JiaZ, et al. Advanced glycation end products augment experimental hepatic fibrosis[J]. J Gastroenterol Hepatol, 2013,28(2):369-376. DOI: 10.1111/jgh.12042.
    [31] WeinhageT, WirthT, SchützP, et al. The Receptor for advanced glycation endproducts (RAGE) contributes to severe inflammatory liver injury in mice[J]. Front Immunol, 2020,11:1157. DOI: 10.3389/fimmu.2020.01157.
    [32] ReddyVP, AryalP, DarkwahEK. Advanced glycation end products in health and disease[J]. Microorganisms, 2022,10(9):1848. DOI: 10.3390/microorganisms10091848.
    [33] 龚政, 张筱薇, 李笑眉, 等. 黄芩苷对高糖处理的小鼠成纤维细胞铁死亡的作用及其机制[J].中华烧伤与创面修复杂志,2025,41(3):277-285. DOI: 10.3760/cma.j.cn501225-20240425-00151.
    [34] CapellettiMM, ManceauH, PuyH, et al. Ferroptosis in liver diseases: an overview[J]. Int J Mol Sci, 2020,21(14):4908. DOI: 10.3390/ijms21144908.
    [35] SunY, ZhaoB, LiH, et al. Overview of ferroptosis and pyroptosis in acute liver failure[J]. World J Gastroenterol, 2024,30(34):3856-3861. DOI: 10.3748/wjg.v30.i34.3856.
    [36] GuoY, ChenH, SunJ, et al. Maresin1 inhibits ferroptosis via the Nrf2/SLC7A11/GPX4 pathway to protect against sepsis-induced acute liver injury[J]. J Inflamm Res, 2024,17:11041-11053. DOI: 10.2147/JIR.S498775.
    [37] WangJ, LiaoL, MiaoB, et al. Deciphering the role of the MALT1-RC3H1 axis in regulating GPX4 protein stability[J]. Proc Natl Acad Sci U S A, 2025,122(1):e2419625121. DOI: 10.1073/pnas.2419625121.
    [38] 张浩, 官浩, 汪宇航, 等. 铁死亡在大鼠烧冲复合伤合并急性肺损伤中的作用及其机制[J].中华烧伤与创面修复杂志,2024,40(11):1034-1042. DOI: 10.3760/cma.j.cn501225-20240528-00199.
    [39] DollS, PronethB, TyurinaYY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017,13(1):91-98. DOI: 10.1038/nchembio.2239.
    [40] HeY, WangJ, YingC, et al. The interplay between ferroptosis and inflammation: therapeutic implications for cerebral ischemia-reperfusion[J]. Front Immunol, 2024,15:1482386. DOI: 10.3389/fimmu.2024.1482386.
  • 图  1  2组小鼠造模后24 h内的生存比例比较

    注:模型组(12只)和氨基胍干预组(8只)小鼠均通过腹腔注射内毒素/脂多糖+D-氨基半乳糖诱导急性肝损伤,其中氨基胍干预组小鼠在造模12 h前经腹腔注射氨基胍;与模型组相比,aP<0.05

    图  2  3组小鼠造模后6 h时肝脏大体形态及肝组织病理情况。2A、2B、2C.分别为空白对照组、模型组、氨基胍干预组肝脏大体形态,图2B中的肝脏颜色呈暗红色,形态异常;2D、2E、2F.分别为空白对照组、模型组、氨基胍干预组肝组织病理情况,图2E中肝组织病理损伤严重,干细胞大量坏死(箭头所示) 苏木精-伊红 ×400

    注:模型组和氨基胍干预组小鼠均通过腹腔注射内毒素/脂多糖+D-氨基半乳糖诱导急性肝损伤进行造模,其中氨基胍干预组小鼠在造模12 h前经腹腔注射氨基胍;空白对照组小鼠经腹腔注射磷酸盐缓冲液

    图  3  3组小鼠造模后6 h时肝组织中细胞凋亡情况 藻红蛋白-4',6-二脒基-2-苯基吲哚 ×200。3A、3B、3C.分别为空白对照组、模型组、氨基胍干预组,图3B中凋亡细胞占比明显高于图3A,3C中凋亡细胞占比明显低于图3B

    注:模型组和氨基胍干预组小鼠均通过腹腔注射内毒素/脂多糖+D-氨基半乳糖诱导急性肝损伤,其中氨基胍干预组小鼠在造模12 h前经腹腔注射氨基胍;空白对照组小鼠经腹腔注射等体积的磷酸盐缓冲液;活细胞阳性染色为蓝色,凋亡细胞阳性颜色为红色

    图  4  3组小鼠造模后6 h时肝组织中4-HNE阳性细胞情况 辣根过氧化物酶-苏木精×400。4A、4B、4C.分别为空白对照组、模型组、氨基胍干预组,图4B中凋亡细胞占比明显高于图4A,4C中凋亡细胞占比明显低于图4B

    注:模型组和氨基胍干预组小鼠均通过腹腔注射内毒素/脂多糖+D-氨基半乳糖诱导急性肝损伤,其中氨基胍干预组小鼠在造模12 h前经腹腔注射氨基胍;空白对照组小鼠经腹腔注射等体积的磷酸盐缓冲液;4-HNE为4-羟基壬烯醛;目标细胞阳性染色为棕褐色,细胞核阳性染色为蓝色

    图  5  蛋白质印迹法检测的4组小鼠造模后6 h时肝组织中炎症相关通路蛋白的表达

    注:模型组和氨基胍干预组小鼠均通过腹腔注射内毒素/脂多糖+D-氨基半乳糖诱导急性肝损伤,其中氨基胍干预组小鼠在造模12 h前经腹腔注射氨基胍;氨基胍对照组小鼠仅经腹腔注射等量氨基胍;空白对照组小鼠经腹腔注射等体积的磷酸盐缓冲液;条带图上方的1、2、3、4分别指空白对照组、氨基胍对照组、模型组和氨基胍干预组;NLRP3为NOD样受体热蛋白结构域相关蛋白3

    图  6  蛋白质印迹法检测的4组小鼠造模后6 h时肝组织中铁死亡标志蛋白的表达

    注:模型组和氨基胍干预组小鼠均通过腹腔注射内毒素/脂多糖+D-氨基半乳糖诱导急性肝损伤,其中氨基胍干预组小鼠在造模12 h前经腹腔注射氨基胍;氨基胍对照组小鼠仅经腹腔注射等量氨基胍;空白对照组小鼠经腹腔注射等体积的磷酸盐缓冲液;条带图上方的1、2、3、4分别指空白对照组、氨基胍对照组、模型组和氨基胍干预组;ACSL4为酰基辅酶A合成酶长链家族成员4,GPX4为谷胱甘肽过氧化物酶4

    Table  1.   3组小鼠造模后6 h时肝组织的氧化应激水平及铁离子含量比较(x¯±s

    组别样本数丙二醛(nmol/g)谷胱甘肽(μg/g)铁离子(μmol/L)
    空白对照组37.1±2.016.3±0.58.9±3.6
    模型组319.0±4.47.4±0.425.8±8.4
    氨基胍干预组35.9±1.816.4±5.314.4±0.4
    F17.6312.867.959
    P0.003<0.0010.020
    P10.0070.0360.018
    P20.0040.0010.085
    注:模型组和氨基胍干预组小鼠均通过腹腔注射内毒素/脂多糖+D-氨基半乳糖诱导急性肝损伤进行造模,其中氨基胍干预组小鼠在造模12 h前经腹腔注射氨基胍;空白对照组小鼠经腹腔注射等体积的磷酸盐缓冲液;F值、P值为3组间各指标总体比较所得;P1值为模型组与空白对照组各指标比较所得;P2值为氨基胍干预组与模型组各指标比较所得
    下载: 导出CSV

    Table  2.   4组小鼠造模后6 h时肝组织中炎症基因的mRNA水平比较(x¯±s

    组别样本数NOS2IL-18IL-1βNLRP3
    空白对照组30.001 14±0.000 420.796±0.0220.028 0±0.001 30.111 1±0.004 3
    氨基胍对照组30.001 84±0.000 240.786±0.2240.029 4±0.002 00.083 0±0.001 7
    模型组31.818 00±0.086 001.603±0.2021.848 0±0.401 81.974 0±0.148 5
    氨基胍干预组30.450 60±0.293 200.991±0.0650.620 7±0.131 40.805 1±0.342 1
    F95.0115.4649.2867.56
    P<0.0010.002<0.001<0.001
    P1>0.999>0.999>0.9990.998
    P2<0.0010.004<0.001<0.001
    P3<0.0010.011<0.0010.006
    注:NOS2为诱导型一氧化氮合酶2,IL为白细胞介素,NLRP3为NOD样受体热蛋白结构域相关蛋白3;模型组和氨基胍干预组小鼠均通过腹腔注射内毒素/脂多糖+D-氨基半乳糖诱导急性肝损伤,其中氨基胍干预组小鼠在造模12 h前经腹腔注射氨基胍;氨基胍对照组小鼠仅经腹腔注射等量氨基胍;空白对照组小鼠经腹腔注射等体积的磷酸盐缓冲液;F值、P值为3组间各指标总体比较所得;P1值为空白对照组与氨基胍对照组各指标比较所得;P2值为模型组与空白对照组各指标比较所得;P3值为氨基胍干预组与模型组各指标比较所得
    下载: 导出CSV
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  52
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-16
  • 网络出版日期:  2026-02-09

目录

    /

    返回文章
    返回