留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧伤感染与免疫紊乱:从发病机制到精准诊疗的转化医学新视野

姚咏明 任超

姚咏明, 任超. 烧伤感染与免疫紊乱:从发病机制到精准诊疗的转化医学新视野[J]. 中华烧伤与创面修复杂志, 2026, 42(2): 1-7. DOI: 10.3760/cma.j.cn501225-20251104-00457.
引用本文: 姚咏明, 任超. 烧伤感染与免疫紊乱:从发病机制到精准诊疗的转化医学新视野[J]. 中华烧伤与创面修复杂志, 2026, 42(2): 1-7. DOI: 10.3760/cma.j.cn501225-20251104-00457.
Yao Yongming,Ren Chao.Postburn infection and immune dysfunction: new translational horizons from the pathogenesis to precision medicine[J].Chin J Burns Wounds,2026,42(2):1-7.DOI: 10.3760/cma.j.cn501225-20251104-00457.
Citation: Yao Yongming,Ren Chao.Postburn infection and immune dysfunction: new translational horizons from the pathogenesis to precision medicine[J].Chin J Burns Wounds,2026,42(2):1-7.DOI: 10.3760/cma.j.cn501225-20251104-00457.

烧伤感染与免疫紊乱:从发病机制到精准诊疗的转化医学新视野

doi: 10.3760/cma.j.cn501225-20251104-00457
基金项目: 

国家重点研发计划 2022YFA1104600

国家自然科学基金重点项目 82130062

详细信息
    通讯作者:

    姚咏明,Email:c_ff@sina.com

Postburn infection and immune dysfunction: new translational horizons from the pathogenesis to precision medicine

Funds: 

National Key Research and Development Program of China 2022YFA1104600

Key Program of National Natural Science Foundation of China 82130062

More Information
  • 摘要: 烧伤后皮肤屏障破坏与免疫紊乱的“病理恶性循环”,使感染成为患者主要并发症及重要死亡原因,其中烧伤脓毒症病例占总死亡病例的50%以上。目前对于烧伤感染的防治面临诸多难题:感染引发失控性炎症反应与免疫紊乱的叠加效应,局部创面向全身性级联损害快速进展,多重耐药菌大量滋生极大增加抗菌治疗的难度。本文对烧伤感染后免疫功能障碍的机制从现象到本质进行深入分析,系统阐述多重耐药菌免疫逃逸、免疫平衡失调、肠道菌群及新型免疫调节细胞在机体免疫紊乱中的重要作用及效应机制;结合智能创面监测系统及新型生物标志物的最新进展,介绍烧伤感染评估及免疫监测的新技术;聚焦烧伤后靶向免疫调控与局部微环境重塑的治疗新策略,进一步解析新的诊疗策略的临床转化挑战与未来发展方向。

     

  • 参考文献(47)

    [1] ChoongE,JuratD,SandeepB,et al.The impact of infection on length of stay in adult burns: a scoping review[J].Burns,2024,50(4):797-807.DOI: 10.1016/j.burns.2024.01.003.
    [2] SalyerCE,BomholtC,BeckmannN,et al.Novel therapeutics for the treatment of burn infection[J].Surg Infect (Larchmt),2021,22(1):113-120.DOI: 10.1089/sur.2020.104.
    [3] GongY,PengY,LuoX,et al.Different infection profiles and antimicrobial resistance patterns between burn ICU and common wards[J].Front Cell Infect Microbiol,2021,11:681731.DOI: 10.3389/fcimb.2021.681731.
    [4] ParmanikA,DasS,KarB,et al.Current treatment strategies against multidrug-resistant bacteria: a review[J].Curr Microbiol,2022,79(12):388.DOI: 10.1007/s00284-022-03061-7.
    [5] IslesNS,MuA,KwongJC,et al.Gut microbiome signatures and host colonization with multidrug-resistant bacteria[J].Trends Microbiol,2022,30(9):853-865.DOI: 10.1016/j.tim.2022.01.013.
    [6] RahimS,RahmanR,JhumaTA,et al.Disrupting antimicrobial resistance: unveiling the potential of vitamin C in combating biofilm formation in drug-resistant bacteria[J].BMC Microbiol,2025,25(1):212.DOI: 10.1186/s12866-025-03800-3.
    [7] ParkerD,AhnD,CohenT,et al.Innate immune signaling activated by MDR bacteria in the airway[J].Physiol Rev,2016,96(1):19-53.DOI: 10.1152/physrev.00009.2015.
    [8] MengH,ZhangT,WangZ,et al.High-throughput host-microbe single-cell RNA sequencing reveals ferroptosis-associated heterogeneity during Acinetobacter baumannii infection[J].Angew Chem Int Ed Engl,2024,63(18):e202400538.DOI: 10.1002/anie.202400538.
    [9] KuznetsovaTA,AndryukovBG,BesednovaNN.Modern aspects of burn injury immunopathogenesis and prognostic immunobiochemical markers (mini-review)[J].BioTech (Basel),2022,11(2):18.DOI: 10.3390/biotech11020018.
    [10] KimHG,GauthierML,HiggsA,et al.Chromatin remodeling and transcriptional silencing define the dynamic innate immune response of tissue resident macrophages after burn injury[J].bioRxiv,2025:2025.05.15.654340.DOI: 10.1101/2025.05.15.654340.
    [11] ZhuZ,GuoZ,GaoX,et al.Stomatin promotes neutrophil degranulation and vascular leakage in the early stage after severe burn via enhancement of the intracellular binding of neutrophil primary granules to F-actin[J].Burns,2024,50(3):653-665.DOI: 10.1016/j.burns.2023.12.013.
    [12] LuckME,LiX,HerrnreiterCJ,et al.Ethanol intoxication and burn injury increases intestinal regulatory T cell population and regulatory T cell suppressive capability[J].Shock,2022,57(2):230-237.DOI: 10.1097/SHK.0000000000001853.
    [13] YaoRQ,RenC,XiaZF,et al.Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles[J].Autophagy,2021,17(2):385-401.DOI: 10.1080/15548627.2020.1725377.
    [14] HungTD,LamNN,HungNT.Prognostic values of neutrophil/lymphocyte ratio in severe burn patients[J].Ann Burns Fire Disasters,2024,37(2):124-129.
    [15] YuanM,QianX,HuangY,et al.Th17 activation and Th17/Treg imbalance in prolonged anterior intraocular inflammation after ocular alkali burn[J].Int J Mol Sci,2022,23(13):7075.DOI: 10.3390/ijms23137075.
    [16] LuckME,HerrnreiterCJ,ChoudhryMA.Gut microbial changes and their contribution to post-burn pathology[J].Shock,2021,56(3):329-344.DOI: 10.1097/SHK.0000000000001736.
    [17] HajialibabaeiR,SayeliFG,AghadavoodE,et al.The beneficial role of probiotics and gut microbiota in signaling pathways, immunity, apoptosis, autophagy, and intestinal barrier for effective wound healing post-burn injury[J].Microb Pathog,2025,206:107816.DOI: 10.1016/j.micpath.2025.107816.
    [18] HouY,KhatriP,RindyJ,et al.Single-cell transcriptional landscape of temporal neutrophil response to burn wound in larval zebrafish[J].J Immunol,2024,213(4):469-480.DOI: 10.4049/jimmunol.2400149.
    [19] YaoRQ,ZhaoPY,LiZX,et al.Single-cell transcriptome profiling of sepsis identifies HLA-DR(low)S100A(high) monocytes with immunosuppressive function[J].Mil Med Res,2023,10(1):27.DOI: 10.1186/s40779-023-00462-y.
    [20] YaoRQ,LiZX,WangLX,et al.Single-cell transcriptome profiling of the immune space-time landscape reveals dendritic cell regulatory program in polymicrobial sepsis[J].Theranostics,2022,12(10):4606-4628.DOI: 10.7150/thno.72760.
    [21] YıldızM,SarpdağıY,OkuyarM,et al.Segmentation and classification of skin burn images with artificial intelligence: Development of a mobile application[J].Burns,2024,50(4):966-979.DOI: 10.1016/j.burns.2024.01.007.
    [22] LiX,WangW,GaoQ,et al.Intelligent bacteria-targeting ZIF-8 composite for fluorescence imaging-guided photodynamic therapy of drug-resistant superbug infections and burn wound healing[J].Exploration (Beijing),2024,4(6):20230113.DOI: 10.1002/EXP.20230113.
    [23] GurbuzK,DasK,DemirM,et al.Impacts of intelligent monitoring technology installation and additional modalities on hand hygiene compliance in a burn center: a quasi-experimental longitudinal trial[J].Burns,2024,50(5):1307-1314.DOI: 10.1016/j.burns.2024.02.020.
    [24] O'TooleHJ,LoweNM,ArunV,et al.Plasma-derived extracellular vesicles (EVs) as biomarkers of sepsis in burn patients via label-free Raman spectroscopy[J].J Extracell Vesicles,2024,13(9):e12506.DOI: 10.1002/jev2.12506.
    [25] BoutinL,SoussiS,Garcia LavelloA,et al.Galectin-3 and soluble CD146 identify cardiorenal injuries in severe burn patients: a biomarker-based approach[J].Cardiorenal Med,2024,14(1):460-472.DOI: 10.1159/000540845.
    [26] MahungC,SteppWH,LongC,et al.Early expression of IL-10, IL-12, ARG1, and NOS2 genes in peripheral blood mononuclear cells synergistically correlate with patient outcome after burn injury[J].J Trauma Acute Care Surg,2022,93(5):702-711.DOI: 10.1097/TA.0000000000003602.
    [27] NiuZ,WeiG,LiangH,et al.Bioinformatics-led identification of potential biomarkers and inflammatory infiltrates in burn injury[J].J Burn Care Res,2023,44(6):1382-1392.DOI: 10.1093/jbcr/irad050.
    [28] SunP,CuiM,JingJ,et al.Deciphering the molecular and cellular atlas of immune cells in septic patients with different bacterial infections[J].J Transl Med,2023,21(1):777.DOI: 10.1186/s12967-023-04631-4.
    [29] BalchJA,ChenUI,LiesenfeldO,et al.Defining critical illness using immunological endotypes in patients with and without sepsis: a cohort study[J].Crit Care,2023,27(1):292.DOI: 10.1186/s13054-023-04571-x.
    [30] ReyesM,FilbinMR,BhattacharyyaRP,et al.An immune-cell signature of bacterial sepsis[J].Nat Med,2020,26(3):333-340.DOI: 10.1038/s41591-020-0752-4.
    [31] 洪德江,曾婉婷,王伟,等.脓毒症免疫亚型与糖皮质激素治疗反应及预后的关系:一项潜在剖面分析研究 [J].中华烧伤与创面修复杂志.
    [32] PenatzerJ,BodempudiP,SchwartzD,et al.Reversibility of immune dysfunction following pediatric thermal injury[J].J Burn Care Res,2026,47(1):103-112.DOI: 10.1093/jbcr/iraf152.
    [33] PatilNK,LuanL,BohannonJK,et al.Frontline Science: Anti-PD-L1 protects against infection with common bacterial pathogens after burn injury[J].J Leukoc Biol,2018,103(1):23-33.DOI: 10.1002/JLB.5HI0917-360R.
    [34] MoradiS,FarajiN,FarzinM,et al.An insight into the use of CAR T-cell as a novel immunotherapy, to heal burn wounds[J].Burns,2023,49(5):1227-1229.DOI: 10.1016/j.burns.2022.12.020.
    [35] LeventogiannisK,KyriazopoulouE,AntonakosN,et al.Toward personalized immunotherapy in sepsis: the PROVIDE randomized clinical trial[J].Cell Rep Med,2022,3(11):100817.DOI: 10.1016/j.xcrm.2022.100817.
    [36] 邓碧涵,成鑫月,祝筱梅,等.烫伤后海水浸泡合并创伤弧菌感染建立脓毒症大鼠模型 [J]. 中华烧伤与创面修复杂志.
    [37] ZuX,HanY,ZhouY,et al.A multifunctional injectable ε-poly-L-lysine-loaded sodium-alginate/gelatin hydrogel promotes the healing of infected wounds by regulating macrophage polarization and the skin microbiota[J/OL].Burns Trauma,2025,13:tkaf037[2025-11-04].https://pubmed.ncbi.nlm.nih.gov/41132947/.DOI: 10.1093/burnst/tkaf037.
    [38] ZhangH,ZhouW,WangH,et al.Hydrogel-based bioactive synthetic skin stimulates regenerative gas signaling and eliminates interfacial pathogens to promote burn wound healing[J].ACS Nano,2025,19(15):15002-15017.DOI: 10.1021/acsnano.5c01134.
    [39] WeiH,ZhangH,YanS,et al.3D-printed ROS-scavenging, proangiogenic, and biodegradable hydrogel for enhancing burn wound healing[J].ACS Appl Mater Interfaces,2025,17(28):39955-39966.DOI: 10.1021/acsami.5c04216.
    [40] HuangJ,LiuH,WangQ,et al.Effects of traditional Chinese medicine collapse stains therapy combined with burn ointment on wound healing, inflammation, and pain mediator levels in patients with second degree burns[J].Pak J Med Sci,2025,41(6):1618-1622.DOI: 10.12669/pjms.41.6.10590.
    [41] XuC,XiaY,JiaZ,et al.The curative effect of Shenfu-injection in the treatment of burn sepsis and its effect on the patient's immune function, HMGB, and vWF[J].Am J Transl Res,2022,14(4):2428-2435.
    [42] ZhangQ,WangH,ChenM,et al.Color-changeable and separable PLA/PVP/chitosan tri-layer self-pumping dressing containing astragalus for promoting the healing of infectious burn wound[J].Int J Biol Macromol,2025,321(Pt 2):146043.DOI: 10.1016/j.ijbiomac.2025.146043.
    [43] ZhouB,BaT,WangL,et al.Combination of sodium butyrate and probiotics ameliorates severe burn-induced intestinal injury by inhibiting oxidative stress and inflammatory response[J].Burns,2022,48(5):1213-1220.DOI: 10.1016/j.burns.2021.11.009.
    [44] Hassaninejad FarahaniF,MoraffahF,SamadiN,et al.Improved infectious burn wound healing by applying lyophilized particles containing probiotics and prebiotics[J].Int J Pharm,2023,636:122800.DOI: 10.1016/j.ijpharm.2023.122800.
    [45] PirouzzadehM,MoraffahF,SamadiN,et al.Enhancement of burn wound healing using optimized bioactive probiotic-loaded alginate films[J].Int J Biol Macromol,2025,301:140454.DOI: 10.1016/j.ijbiomac.2025.140454.
    [46] SchuermannLE,BergmannCB,GoetzmanH,et al.Heat-killed probiotic Lactobacillus plantarum affects the function of neutrophils but does not improve survival in murine burn injury[J].Burns,2023,49(4):877-888.DOI: 10.1016/j.burns.2022.06.015.
    [47] KorkmazHI,FlokstraG,WaasdorpM,et al.The complexity of the post-burn immune response: an overview of the associated local and systemic complications[J].Cells,2023,12(3):345.DOI: 10.3390/cells12030345.
  • 加载中
图(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-04
  • 网络出版日期:  2026-01-30

目录

    /

    返回文章
    返回