Citation: | Leng M,Peng Y,Wang H.Research advances on the biomechanical microenvironment facilitated wound repair through the regulation of cell migration[J].Chin J Burns Wounds,2022,38(1):90-94.DOI: 10.3760/cma.j.cn501120-20200921-00419. |
[1] |
陈孝强.负压创面治疗调控皮肤力学微环境促进创面愈合的机制研究[D].西安:空军军医大学,2019.DOI:10.27002/d.cnki.gsjyu.2019.000096. |
[2] |
陈孝强,张伟,李学拥.负压伤口疗法促进创面愈合的生物力学效应研究进展[J].中华烧伤杂志,2018,34(4):243-246.DOI: 10.3760/cma.j.issn.1009-2587.2018.04.010.
|
[3] |
PullarJM,CarrAC,VissersM.The roles of vitamin C in skin health[J].Nutrients,2017,9(8):866.DOI: 10.3390/nu9080866.
|
[4] |
王宏宇,刘玲英,巴特.间充质干细胞源性外泌体在创面修复中的研究进展[J/CD].中华损伤与修复杂志:电子版,2020,15(1):67-69.DOI: 10.3877/cma.j.issn.1673-9450.2020.01.012.
|
[5] |
邓呈亮,姚远镇,刘志远,等.2型糖尿病患者脂肪源性间充质干细胞对小鼠压疮创面愈合的影响[J].中华烧伤杂志,2019,35(1):40-47.DOI: 10.3760/cma.j.issn.1009-2587.2019.01.008.
|
[6] |
王澜,刘刚,李哲,等.富血小板纤维蛋白在合并潜行皮下窦道的慢性创面治疗中的临床应用[J].中华烧伤杂志,2018,34(9):637-642.DOI: 10.3760/cma.j.issn.1009-2587.2018.09.014.
|
[7] |
MaromA,BerkovitchY,ToumeS,et al.Non-damaging stretching combined with sodium pyruvate supplement accelerate migration of fibroblasts and myoblasts during gap closure[J].Clin Biomech (Bristol, Avon),2019,62:96-103.DOI: 10.1016/j.clinbiomech.2019.01.009.
|
[8] |
van den BergM,MacCarthy-MorroghL,CarterD,et al.Proteolytic and opportunistic breaching of the basement membrane zone by immune cells during tumor initiation[J].Cell Rep,2019,27(10):2837-2846.e4.DOI: 10.1016/j.celrep.2019.05.029.
|
[9] |
SherwoodDR,PlastinoJ.Invading, leading and navigating cells in caenorhabditis elegans: insights into cell movement in vivo[J].Genetics,2018,208(1):53-78.DOI: 10.1534/genetics.117.300082.
|
[10] |
NerurkarNL,LeeC,MahadevanL,et al.Molecular control of macroscopic forces drives formation of the vertebrate hindgut[J].Nature,2019,565(7740):480-484.DOI: 10.1038/s41586-018-0865-9.
|
[11] |
KelleyLC,ChiQ,CáceresR,et al.Adaptive F-actin polymerization and localized ATP production drive basement membrane invasion in the absence of MMPs[J].Dev Cell,2019,48(3):313-328.e8.DOI: 10.1016/j.devcel.2018.12.018.
|
[12] |
GlentisA,OertleP,MarianiP,et al.Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane[J].Nat Commun,2017,8(1):924.DOI: 10.1038/s41467-017-00985-8.
|
[13] |
LadouxB,MègeRM.Mechanobiology of collective cell behaviours[J].Nat Rev Mol Cell Biol,2017,18(12):743-757.DOI: 10.1038/nrm.2017.98.
|
[14] |
TamadaM,PerezTD,NelsonWJ,et al.Two distinct modes of myosin assembly and dynamics during epithelial wound closure[J].J Cell Biol,2007,176(1):27-33.DOI: 10.1083/jcb.200609116.
|
[15] |
LehtimäkiJ,HakalaM,LappalainenP.Actin filament structures in migrating cells[J].Handb Exp Pharmacol, 2017,235:123-152.DOI: 10.1007/164_2016_28.
|
[16] |
Abreu-BlancoMT,VerboonJM,LiuR,et al.Drosophila embryos close epithelial wounds using a combination of cellular protrusions and an actomyosin purse string[J].J Cell Sci,2012,125(Pt 24):5984-5997.DOI: 10.1242/jcs.109066.
|
[17] |
KobbAB,Zulueta-CoarasaT,Fernandez-GonzalezR.Tension regulates myosin dynamics during Drosophila embryonic wound repair[J].J Cell Sci,2017,130(4):689-696.DOI: 10.1242/jcs.196139.
|
[18] |
ShindoA,AudreyA,TakagishiM,et al.Septin-dependent remodeling of cortical microtubule drives cell reshaping during epithelial wound healing[J].J Cell Sci,2018,131(12):jcs212647.DOI: 10.1242/jcs.212647.
|
[19] |
Zulueta-CoarasaT, Fernandez-GonzalezR. Dynamic force patterns promote collective cell movements during embryonic wound repair[J]. Nature Phys, 2018,14:750-758.DOI: 10.1038/s41567-018-0111-2.
|
[20] |
FriedlP,GilmourD.Collective cell migration in morphogenesis, regeneration and cancer[J].Nat Rev Mol Cell Biol,2009,10(7):445-457.DOI: 10.1038/nrm2720.
|
[21] |
TrappmannB,BakerBM,PolacheckWJ,et al.Matrix degradability controls multicellularity of 3D cell migration[J].Nat Commun,2017,8(1):371.DOI: 10.1038/s41467-017-00418-6.
|
[22] |
VigDK,HambyAE,WolgemuthCW.Cellular contraction can drive rapid epithelial flows[J].Biophys J,2017,113(7):1613-1622.DOI: 10.1016/j.bpj.2017.08.004.
|
[23] |
YangY,JollyMK,LevineH.Computational modeling of collective cell migration: mechanical and biochemical aspects[J].Adv Exp Med Biol,2019,1146:1-11.DOI: 10.1007/978-3-030-17593-1_1.
|
[24] |
FriedlP,MayorR.Tuning collective cell migration by cell-cell junction regulation[J].Cold Spring Harb Perspect Biol,2017,9(4):a029199.DOI: 10.1101/cshperspect.a029199.
|
[25] |
ManeshiMM,ZieglerL,SachsF,et al.Enantiomeric Aβ peptides inhibit the fluid shear stress response of PIEZO1[J].Sci Rep,2018,8(1):14267.DOI: 10.1038/s41598-018-32572-2.
|
[26] |
AjetiV,TabatabaiAP,FleszarAJ,et al.Wound healing coordinates actin architectures to regulate mechanical work[J].Nat Phys,2019,15:696-705.DOI: 10.1038/s41567-019-0485-9.
|
[27] |
BarrigaEH,MayorR.Adjustable viscoelasticity allows for efficient collective cell migration[J].Semin Cell Dev Biol,2019,93:55-68.DOI: 10.1016/j.semcdb.2018.05.027.
|
[28] |
CurranS,StrandkvistC,BathmannJ,et al.Myosin Ⅱ controls junction fluctuations to guide epithelial tissue ordering[J].Dev Cell,2017,43(4):480-492.e6.DOI: 10.1016/j.devcel.2017.09.018.
|
[29] |
TetleyRJ,MaoY.The same but different: cell intercalation as a driver of tissue deformation and fluidity[J].Philos Trans R Soc Lond B Biol Sci,2018,373(1759):20170328.DOI: 10.1098/rstb.2017.0328.
|
[30] |
TetleyRJ,StaddonMF,HellerD,et al.Tissue fluidity promotes epithelial wound healing[J].Nat Phys,2019,15(11):1195-1203.DOI: 10.1038/s41567-019-0618-1.
|
[31] |
StaddonMF,BiD,TabatabaiAP,et al.Cooperation of dual modes of cell motility promotes epithelial stress relaxation to accelerate wound healing[J].PLoS Comput Biol,2018,14(10):e1006502.DOI: 10.1371/journal.pcbi.1006502.
|
[32] |
HaageA,GoodwinK,WhitewoodA,et al.Talin autoinhibition regulates cell-ECM adhesion dynamics and wound healing in vivo[J].Cell Rep,2018,25(9):2401-2416.e5.DOI: 10.1016/j.celrep.2018.10.098.
|
[33] |
AndasariV,LüD,SwatM,et al.Computational model of wound healing: EGF secreted by fibroblasts promotes delayed re-epithelialization of epithelial keratinocytes[J].Integr Biol (Camb),2018,10(10):605-634.DOI: 10.1039/c8ib00048d.
|
[34] |
GovindarajuP,ToddL,ShetyeS,et al.CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing[J].Matrix Biol,2019,75/76:314-330.DOI: 10.1016/j.matbio.2018.06.004.
|
[35] |
WisdomKM,AdebowaleK,ChangJ,et al.Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments[J].Nat Commun,2018,9(1):4144.DOI: 10.1038/s41467-018-06641-z.
|
[36] |
MuellerJ,SzepG,NemethovaM,et al.Load adaptation of lamellipodial actin networks[J].Cell,2017,171(1):188-200.e16.DOI: 10.1016/j.cell.2017.07.051.
|
[37] |
WangWY,DavidsonCD,LinD,et al.Actomyosin contractility-dependent matrix stretch and recoil induces rapid cell migration[J].Nat Commun,2019,10(1):1186.DOI: 10.1038/s41467-019-09121-0.
|
[38] |
YamadaKM,SixtM.Mechanisms of 3D cell migration[J].Nat Rev Mol Cell Biol,2019,20(12):738-752.DOI: 10.1038/s41580-019-0172-9.
|
[39] |
VishwakarmaM,Di RussoJ,ProbstD,et al.Mechanical interactions among followers determine the emergence of leaders in migrating epithelial cell collectives[J].Nat Commun,2018,9(1):3469.DOI: 10.1038/s41467-018-05927-6.
|
[40] |
SparksHD,SigaevaT,TarrafS,et al.Biomechanics of wound healing in an equine limb model: effect of location and treatment with a peptide-modified collagen-chitosan hydrogel[J].ACS Biomater Sci Eng,2021,7(1):265-278.DOI: 10.1021/acsbiomaterials.0c01431.
|
[41] |
NiemiecSM,LouiselleAE,HiltonSA,et al.Nanosilk increases the strength of diabetic skin and delivers CNP-miR146a to improve wound healing[J].Front Immunol,2020,11:590285.DOI: 10.3389/fimmu.2020.590285.
|
[42] |
HanF,ZhangP,ChenT,et al.A LbL-assembled bioactive coating modified nanofibrous membrane for rapid tendon-bone healing in ACL reconstruction[J].Int J Nanomedicine,2019,14:9159-9172.DOI: 10.2147/IJN.S214359.
|
[43] |
HouJ,ChenL,ZhouM,et al.Multi-layered polyamide/collagen scaffolds with topical sustained release of N-acetylcysteine for promoting wound healing[J].Int J Nanomedicine,2020,15:1349-1361.DOI: 10.2147/IJN.S232190.
|
[44] |
Safaee-ArdakaniMR,Hatamian-ZarmiA,SadatSM,et al.Electrospun Schizophyllan/polyvinyl alcohol blend nanofibrous scaffold as potential wound healing[J].Int J Biol Macromol,2019,127:27-38.DOI: 10.1016/j.ijbiomac.2018.12.256.
|
[45] |
BabithaS,KorrapatiPS.Biodegradable zein-polydopamine polymeric scaffold impregnated with TiO2 nanoparticles for skin tissue engineering[J].Biomed Mater,2017,12(5):055008.DOI: 10.1088/1748-605X/aa7d5a.
|
[46] |
AugustineR,HasanA,PatanNK,et al.Titanium nanorods loaded PCL meshes with enhanced blood vessel formation and cell migration for wound dressing applications[J].Macromol Biosci,2019,19(7):e1900058.DOI: 10.1002/mabi.201900058.
|
[47] |
XiLoh EY,FauziMB,NgMH,et al.Cellular and molecular interaction of human dermal fibroblasts with bacterial nanocellulose composite hydrogel for tissue regeneration[J].ACS Appl Mater Interfaces,2018,10(46):39532-39543.DOI: 10.1021/acsami.8b16645.
|
[48] |
QianZ,WangH,BaiY,et al.Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release[J].ACS Appl Mater Interfaces,2020,12(50):55659-55674.DOI: 10.1021/acsami.0c17142.
|
[49] |
YuanR,YangN,FanS,et al.Biomechanical motion-activated endogenous wound healing through LBL self-powered nanocomposite repairer with ph-responsive anti-inflammatory effect[J].Small,2021,17(50):e2103997.DOI: 10.1002/smll.202103997.
|