Dong YQ,Li LL,Zhu XR,et al.Preparation and roles of sliver-loaded viscous hydrogel in healing of full-thickness skin defect wounds with bacterial colonization in mice[J].Chin J Burns,2021,37(11):1036-1047.DOI: 10.3760/cma.j.cn501120-20210906-00304.
Citation: Wang MY,Cui P,Xin HM.Research advances of the roles of sphingosine-1-phosphate in acute lung injury[J].Chin J Burns Wounds,2022,38(5):496-500.DOI: 10.3760/cma.j.cn501120-20210703-00234.

Research advances of the roles of sphingosine-1-phosphate in acute lung injury

doi: 10.3760/cma.j.cn501120-20210703-00234
Funds:

Guangxi Science and Technology Base and Talent Special Program AD18126016

Science and Technology Planning Program of Guilin 20170109-35

Science and Technology Program of the 924th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army GS2020CZ06, GS2020FH08

More Information
  • Corresponding author: Xin Haiming, Email: xinhm123@163.com
  • Received Date: 2021-07-03
  • Sphingosine-1-phosphate (S1P) is the main metabolite produced in the process of phospholipid metabolism, which can promote proliferation, migration, and apoptosis of cells, and maintain the barrier function of vascular endothelium. The latest researches showed that S1P can alleviate acute lung injury (ALI) and the inflammation caused by ALI, while the dosage of S1P is still needed to be considered. Mesenchymal stem cells (MSCs) have been a emerging therapy with potential therapeutic effects on ALI because of their characteristics of self-replication and multi-directional differentiation, and their advantages in hematopoiesis, immune regulation, and tissue repair. S1P can promote differentiation of MSCs and participate in immune regulation, while MSCs can regulate the homeostasis of S1P in the body. The synergistic effect of S1P and MSC provides a new treatment method for ALI. This article reviews the production and biological function of S1P, receptor and signal pathway of S1P, the therapeutic effects of S1P on ALI, and the research advances of S1P combined with MSCs in the treatment of ALI, aiming to provide theoretical references for the development of S1P targeted drugs in the treatment of ALI and the search for new combined treatment schemes for ALI.

     

  • [1]
    MokraD,KosutovaP.Biomarkers in acute lung injury[J].Respir Physiol Neurobiol,2015,209:52-58.DOI: 10.1016/j.resp.2014.10.006.
    [2]
    CombesA,PesentiA,RanieriVM.Fifty years of research in ARDS. Is extracorporeal circulation the future of acute respiratory distress syndrome management?[J].Am J Respir Crit Care Med,2017,195(9):1161-1170.DOI: 10.1164/rccm.201701-0217CP.
    [3]
    俞正秋,马春芳,蔡宛如.急性肺损伤/急性呼吸窘迫综合征治疗进展[J].中国现代医生,2021,59(13):189-192.
    [4]
    NoonePM,ReddySP.Recent advances in dead cell clearance during acute lung injury and repair[J].Fac Rev,2021,10:33.DOI: 10.12703/r/10-33.
    [5]
    FanY,ChenJ,LiuD,et al.HDL-S1P protects endothelial function and reduces lung injury during sepsis in vivo and in vitro[J].Int J Biochem Cell Biol,2020,126:105819.DOI: 10.1016/j.biocel.2020.105819.
    [6]
    BehnkeJ,KremerS,ShahzadT,et al.MSC based therapies-new perspectives for the injured lung[J].J Clin Med,2020,9(3):682.DOI: 10.3390/jcm9030682.
    [7]
    LuW,XiuX,ZhaoY,et al.Improved proliferation and differentiation of bone marrow mesenchymal stem cells into vascular endothelial cells with sphingosine 1-phosphate[J].Transplant Proc,2015,47(6):2035-2040.DOI: 10.1016/j.transproceed.2015.05.032.
    [8]
    张淼补肾化痰法经Sphk1/S1P-PI3K/AKT/CyclinD1信号通路调控肥胖PCOS模型雌鼠子宫内膜容受性机制研究成都成都中医药大学2019

    张淼. 补肾化痰法经Sphk1/S1P-PI3K/AKT/CyclinD1信号通路调控肥胖PCOS模型雌鼠子宫内膜容受性机制研究[D]. 成都:成都中医药大学, 2019.

    [9]
    LidgerwoodGE,PitsonSM,BonderC,et al.Roles of lysophosphatidic acid and sphingosine-1-phosphate in stem cell biology[J].Prog Lipid Res,2018,72:42-54.DOI: 10.1016/j.plipres.2018.09.001.
    [10]
    XiongY,HlaT.S1P control of endothelial integrity[J].Curr Top Microbiol Immunol,2014,378:85-105.DOI: 10.1007/978-3-319-05879-5_4.
    [11]
    HopsonKP,TrueloveJ,ChunJ,et al.S1P activates store-operated calcium entry via receptor- and non-receptor-mediated pathways in vascular smooth muscle cells[J].Am J Physiol Cell Physiol,2011,300(4):C919-926.DOI: 10.1152/ajpcell.00350.2010.
    [12]
    ProiaRL,HlaT.Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy[J].J Clin Invest,2015,125(4):1379-1387.DOI: 10.1172/JCI76369.
    [13]
    YaoX,XieL,ZengY.MiR-9 Promotes angiogenesis via targeting on sphingosine-1-phosphate receptor 1[J].Front Cell Dev Biol,2020,8:755.DOI: 10.3389/fcell.2020.00755.
    [14]
    FanX,LiuL,ShiY,et al.Recent advances of the function of sphingosine 1-phosphate (S1P) receptor S1P3[J].J Cell Physiol,2021,236(3):1564-1578.DOI: 10.1002/jcp.29958.
    [15]
    BaeyensA,SchwabSR.Finding a way out: S1P signaling and immune cell migration[J].Annu Rev Immunol,2020,38:759-784.DOI: 10.1146/annurev-immunol-081519-083952.
    [16]
    MagayeRR,SaviraF,HuaY,et al.Attenuating PI3K/Akt-mTOR pathway reduces dihydrosphingosine 1 phosphate mediated collagen synthesis and hypertrophy in primary cardiac cells[J].Int J Biochem Cell Biol,2021,134:105952.DOI: 10.1016/j.biocel.2021.105952.
    [17]
    ParkJH,ParkKK,ChoeJY,et al.Identification of sphingosine 1-phosphate level and MAPK/ERK signaling in pancreatic β cells[J].Ann Pediatr Endocrinol Metab,2021,26(4):252-258.DOI: 10.6065/apem.2040266.133.
    [18]
    CastaldiA,ChesiniGP,TaylorAE,et al.Sphingosine 1-phosphate elicits RhoA-dependent proliferation and MRTF-A mediated gene induction in CPCs[J].Cell Signal,2016,28(8):871-879.DOI: 10.1016/j.cellsig.2016.04.006.
    [19]
    ShiW,MaD,CaoY,et al.SphK2/S1P promotes metastasis of triple-negative breast cancer through the PAK1/LIMK1/Cofilin1 signaling pathway[J].Front Mol Biosci,2021,8:598218.DOI: 10.3389/fmolb.2021.598218.
    [20]
    TsaiHC,HanMH.Sphingosine-1-phosphate (S1P) and S1P signaling pathway: therapeutic targets in autoimmunity and inflammation[J].Drugs,2016,76(11):1067-1079.DOI: 10.1007/s40265-016-0603-2.
    [21]
    YuH.Targeting S1PRs as a therapeutic strategy for inflammatory bone loss diseases-beyond regulating S1P signaling[J].Int J Mol Sci,2021,22(9):4411.DOI: 10.3390/ijms22094411.
    [22]
    HarijithA,PendyalaS,EbenezerDL,et al.Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium[J].Am J Physiol Lung Cell Mol Physiol,2016,311(2):L337-351.DOI: 10.1152/ajplung.00447.2015.
    [23]
    HaAW,BaiT,EbenezerDL,et al.Sphingosine kinase 1 regulates lysyl oxidase through STAT3 in hyperoxia-mediated neonatal lung injury[J].Thorax,2022,77(1):47-57.DOI: 10.1136/thoraxjnl-2020-216469.
    [24]
    ZhaoJ,LiuJ,LeeJF,et al.TGF-β/SMAD3 pathway stimulates sphingosine-1 phosphate receptor 3 expression: implication of sphingosine-1 phosphate receptor 3 in lung adenocarcinoma progression[J].J Biol Chem,2016,291(53):27343-27353.DOI: 10.1074/jbc.M116.740084.
    [25]
    PunsawadC,ViriyavejakulP.Expression of sphingosine kinase 1 and sphingosine 1-phosphate receptor 3 in malaria-associated acute lung injury/acute respiratory distress syndrome in a mouse model[J].PLoS One,2019,14(9):e0222098.DOI: 10.1371/journal.pone.0222098.
    [26]
    KnipeRS,SpinneyJJ,AbeEA,et al.Endothelial-specific loss of sphingosine-1-phosphate receptor 1 increases vascular permeability and exacerbates bleomycin-induced pulmonary fibrosis[J].Am J Respir Cell Mol Biol,2022,66(1):38-52.DOI: 10.1165/rcmb.2020-0408OC.
    [27]
    HuangLS,BerdyshevE,MathewB,et al.Targeting sphingosine kinase 1 attenuates bleomycin-induced pulmonary fibrosis[J].FASEB J,2013,27(4):1749-1760.DOI: 10.1096/fj.12-219634.
    [28]
    HuangLS,SudhadeviT,FuP,et al.Sphingosine kinase 1/S1P signaling contributes to pulmonary fibrosis by activating Hippo/YAP pathway and mitochondrial reactive oxygen species in lung fibroblasts[J].Int J Mol Sci,2020,21(6):2064.DOI: 10.3390/ijms21062064.
    [29]
    DonatiC,CencettiF,BernacchioniC,et al.Role of sphingosine 1-phosphate signalling in tissue fibrosis[J].Cell Signal,2021,78:109861.DOI: 10.1016/j.cellsig.2020.109861.
    [30]
    GutbierB,SchönrockSM,EhrlerC,et al.Sphingosine kinase 1 regulates inflammation and contributes to acute lung injury in pneumococcal pneumonia via the sphingosine-1-phosphate receptor 2[J].Crit Care Med,2018,46(3):e258-e267.DOI: 10.1097/CCM.0000000000002916.
    [31]
    SheaBS,BrooksSF,FontaineBA,et al.Prolonged exposure to sphingosine 1-phosphate receptor-1 agonists exacerbates vascular leak, fibrosis, and mortality after lung injury[J].Am J Respir Cell Mol Biol,2010,43(6):662-673.DOI: 10.1165/rcmb.2009-0345OC.
    [32]
    ZhaoY,GorshkovaIA,BerdyshevE,et al.Protection of LPS-induced murine acute lung injury by sphingosine-1- phosphate lyase suppression[J].Am J Respir Cell Mol Biol,2011,45(2):426-435.DOI: 10.1165/rcmb.2010-0422OC.
    [33]
    ZhuB,LuoGH,FengYH,et al.Apolipoprotein M protects against lipopolysaccharide-induced acute lung injury via sphingosine-1- phosphate signaling[J].Inflammation,2018,41(2):643-653.DOI: 10.1007/s10753-017-0719-x.
    [34]
    HuwilerA,Zangemeister-WittkeU.The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: recent findings and new perspectives[J].Pharmacol Ther,2018,185:34- 49.DOI: 10.1016/j.pharmthera.2017.11.001.
    [35]
    NatarajanV,DudekSM,JacobsonJR,et al.Sphingosine-1- phosphate, FTY720, and sphingosine-1-phosphate receptors in the pathobiology of acute lung injury[J].Am J Respir Cell Mol Biol,2013,49(1):6-17.DOI: 10.1165/rcmb.2012-0411TR.
    [36]
    WangZ,KawaboriM,HoukinK.FTY720 (fingolimod) ameliorates brain injury through multiple mechanisms and is a strong candidate for stroke treatment[J].Curr Med Chem,2020,27(18):2979-2993.DOI: 10.2174/0929867326666190308133732.
    [37]
    SassoliC,FratiA,TaniA,et al.Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation[J].PLoS One,2014,9(9):e108662.DOI: 10.1371/journal.pone.0108662.
    [38]
    ChenJ,LiC,LiangZ,et al.Human mesenchymal stromal cells small extracellular vesicles attenuate sepsis-induced acute lung injury in a mouse model: the role of oxidative stress and the mitogen-activated protein kinase/nuclear factor kappa B pathway[J].Cytotherapy,2021,23(10):918-930.DOI: 10.1016/j.jcyt.2021.05.009.
    [39]
    ZhouZ,HuaY,DingY,et al.Conditioned medium of bone marrow mesenchymal stem cells involved in acute lung injury by regulating epithelial sodium channels via miR-34c[J].Front Bioeng Biotechnol,2021,9:640116.DOI: 10.3389/fbioe.2021.640116.
    [40]
    PengW,ChangM,WuY,et al.Lyophilized powder of mesenchymal stem cell supernatant attenuates acute lung injury through the IL-6-p-STAT3-p63-JAG2 pathway[J].Stem Cell Res Ther,2021,12(1):216.DOI: 10.1186/s13287-021-02276-y.
    [41]
    LiuA,ZhangX,HeH,et al.Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease[J].Expert Opin Biol Ther,2020,20(2):125-140.DOI: 10.1080/14712598.2020.1689954.
    [42]
    BinderBY,SondergaardCS,NoltaJA,et al.Lysophosphatidic acid enhances stromal cell-directed angiogenesis[J].PLoS One,2013,8(12):e82134.DOI: 10.1371/journal.pone.0082134.
    [43]
    LiuH,ZhangZ,LiP,et al.Regulation of S1P receptors and sphingosine kinases expression in acute pulmonary endothelial cell injury[J].PeerJ,2016,4:e2712.DOI: 10.7717/peerj.2712.
    [44]
    ZhangZ, LiW, HengZ, et al. Combination therapy of human umbilical cord mesenchymal stem cells and FTY720 attenuates acute lung injury induced by lipopolysaccharide in a murine model[J]. Oncotarget, 2017,8(44):77407-77414. DOI: 10.18632/oncotarget.20491.
  • Relative Articles

    [1]Xun Haoyi, Su Xiaowei, Hu Fangchao, Liu Xiangyu, Wu Yushou, Liu Tian, Sun Ran, Duan Hongjie, Chi Yunfei, Chai Jiake. Effects of advanced platelet-rich fibrin/chitosan thermosensitive hydrogel on full-thickness skin defect wound healing in diabetic rats[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(5): 451-460. doi: 10.3760/cma.j.cn501225-20231020-00127
    [2]Yan Zhenzhen, Wang Yuxiang, Zhang Tinglin, Xun Jingnan, Ma Yicheng, Ji Chao, Gao Jie, Xiao Shichu. Properties of gelatin-polyethylene glycol hydrogel loaded with silver nanoparticle Chlorella and its effects on healing of infected full-thickness skin defect wounds in mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(1): 33-42. doi: 10.3760/cma.j.cn501225-20231020-00126
    [3]Liu Ying, Cheng Feng, Wang Zewei, Jin Hongxu, Cao Binyan, You Pingfei, Hu An, Shi Xiuyun, Du Juan, Yuan Zhixin. Preparation of chitin/hyaluronic acid/collagen hydrogel loaded with mouse adipose-derived stem cells and its effects on wound healing of full-thickness skin defects in rats[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(1): 50-56. doi: 10.3760/cma.j.cn501225-20230928-00101
    [4]Chen Yuehua, Xu Jun, Xu Lanju, Zhang Lin, Liu Xiangsheng, Wang Shufang. Research advances on the promotive healing effect of hydrogel dressing for diabetic foot wound[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(1): 95-98. doi: 10.3760/cma.j.cn501120-20200827-00393
    [5]Chen Xiangjun, Wu Xing, Lin Huanhuan, Liu Zhaoxing, Liu Sha. Effects of methacrylic anhydride gelatin hydrogel loaded with silver and recombinant human basic fibroblast growth factor on deep partial-thickness burn wounds in rabbits[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(7): 640-649. doi: 10.3760/cma.j.cn501120-20210726-00260
    [6]Liang Liting, Song Wei, Zhang Chao, Li Zhao, Yao Bin, Zhang Mengde, Yuan Xingyu, Enhejirigala, Fu Xiaobing, Huang Sha, Zhu Ping. Effects of in situ cross-linked graphene oxide-containing gelatin methacrylate anhydride hydrogel on wound vascularization of full-thickness skin defect in mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(7): 616-628. doi: 10.3760/cma.j.cn501225-20220314-00063
    [7]He Weifeng. Regulatory role and related mechanism of skin gamma-delta T cell subsets in wound re-epithelialization[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(2): 114-118. doi: 10.3760/cma.j.cn501120-20211210-00411
    [8]Shang Niansheng, Cui Binghuan, Wang Cheng, Gao Hua, Xu Bin, Zhao Ran, Huo Ran. A prospective randomized controlled study of the application effect of hydrogel dressings on deep partial-thickness burn wounds after dermabrasion and tangential excision[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(11): 1085-1089. doi: 10.3760/cma.j.cn501120-20210419-00133
    [9]Cao Wangbei, Gao Changyou. Research advances on multifunctional hydrogel dressings for treatment of diabetic chronic wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(11): 1090-1098. doi: 10.3760/cma.j.cn501120-20210715-00249
    [10]Lu Yifei, Deng Jun, Wang Jing, Luo Gaoxing. Effects and mechanism of Lactococcus lactis thermo-sensitive hydrogel on the wound healing of full-thickness skin defects in diabetic mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(12): 1117-1129. doi: 10.3760/cma.j.cn501120-20201004-00427
    [11]Wei Lichun, Zhang Yijie, Huang Sha, Yao Bin, Li Xiang, Chen Xuyuan, Li Yan, Fu Xiaobing, Wu Xu. Preparation and preliminary research on the characteristics of modified nano-bioglass hydrogel[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(10): 930-938. doi: 10.3760/cma.j.cn501120-20190806-00337
    [12]You Chuan'gang, Zhang Liping, Wang Xin'gang, Zhou Hanlei, Guo Songxue, Wu Pan, Han Chunmao. Influence of collagen/fibroin scaffolds containing silver nanoparticles on dermal regeneration of full-thickness skin defect wound in rat[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2017, 33(2): 103-110. doi: 10.3760/cma.j.issn.1009-2587.2017.02.011
    [13]Qiu Yuxuan, Zhang Guoan, Wan Jiangbo, Zhao Xiaozhuo. Influence of covering of auto-crosslinked sodium hyaluronate gel in combination with xenogenic acellular dermal matrix on healing of full-thickness skin defect wound in pig[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(9): 555-559. doi: 10.3760/cma.j.issn.1009-2587.2016.09.009
    [14]NING Shao-nan, ZHAO Xiao-zhuo, WANG Hui-ying, ZHANG Guo-an. Skin irritation and sensitization of swine acellular dermal matrix treated with hyaluronic acid[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2012, 28(5): 344-348. doi: 10.3760/cma.j.issn.1009-2587.2012.05.008
    [20]SHU Bin, QI Shao-hai, LIU Po, HUANC Yong, XIE fu-lin, XU Ying-hin, LIU Xu-sheng, LI Ye-yang. Influence of skin-derived progenitor cell combining with hyaluronic acid on the wound healing of diabetic rat[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2007, 23(1): 20-24.
  • Cited by

    Periodical cited type(7)

    1. 李树松,马滢,吴晓明,赵晓玉,李丽. 胸腺素β4联合水胶体敷料对深Ⅱ度烧伤大鼠创面愈合及p38丝裂原活化蛋白激酶信号转导通路的影响. 河北医科大学学报. 2024(07): 832-838 .
    2. 金荣华,张珍珍,徐鹏钦,夏斯展,翁婷婷,朱志康,王新刚,有传刚,韩春茂. 三维生物打印抗菌型水凝胶对大鼠全层皮肤缺损创面的作用. 中华烧伤与创面修复杂志. 2023(02): 165-174 . 本站查看
    3. 陈卉,肖海娟. 甲氧西林耐药及敏感金黄色葡萄球菌快速鉴定中梅里埃VTIEK MS质谱仪的应用价值探究. 系统医学. 2023(05): 51-54+72 .
    4. 梁安儒,吴芳晓,李艳,阮将,吴浩. 银离子敷料治疗皮肤深Ⅱ度烧烫伤创面的有效性及安全性观察. 中国美容整形外科杂志. 2023(07): 391-395 .
    5. 任胜男,赵启彧,郑鹃,高坤范,高胜男. 银离子凝胶联合康复护理对手部深度烧伤术后患者创面愈合的影响. 中国美容医学. 2023(12): 184-186 .
    6. 陈敏,左日宜. 负压黄金微针对眶下皱纹的改善效果. 中国医疗美容. 2022(03): 50-54 .
    7. 陈向军,吴兴,林欢欢,刘肇兴,刘沙. 负载银和重组人碱性成纤维细胞生长因子的甲基丙烯酸酐化明胶水凝胶对兔深Ⅱ度烧伤创面的影响. 中华烧伤与创面修复杂志. 2022(07): 640-649 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.3 %FULLTEXT: 13.3 %META: 79.8 %META: 79.8 %PDF: 7.0 %PDF: 7.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.0 %其他: 7.0 %China: 1.5 %China: 1.5 %Kao-sung: 0.2 %Kao-sung: 0.2 %[]: 0.2 %[]: 0.2 %上海: 1.7 %上海: 1.7 %东莞: 2.0 %东莞: 2.0 %乌鲁木齐: 0.9 %乌鲁木齐: 0.9 %佛山: 0.2 %佛山: 0.2 %兰州: 0.2 %兰州: 0.2 %北京: 3.3 %北京: 3.3 %北方邦: 0.2 %北方邦: 0.2 %华盛顿: 0.4 %华盛顿: 0.4 %南京: 1.3 %南京: 1.3 %南宁: 2.2 %南宁: 2.2 %南昌: 0.4 %南昌: 0.4 %台州: 0.2 %台州: 0.2 %合肥: 1.1 %合肥: 1.1 %吉隆坡: 0.4 %吉隆坡: 0.4 %呼和浩特: 0.2 %呼和浩特: 0.2 %喀什: 0.2 %喀什: 0.2 %天津: 1.7 %天津: 1.7 %太原: 0.2 %太原: 0.2 %孝感: 0.2 %孝感: 0.2 %宝鸡: 0.2 %宝鸡: 0.2 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %广州: 0.7 %广州: 0.7 %张家口: 2.8 %张家口: 2.8 %扬州: 0.2 %扬州: 0.2 %拉贾斯坦邦: 0.7 %拉贾斯坦邦: 0.7 %无锡: 1.1 %无锡: 1.1 %昆明: 0.2 %昆明: 0.2 %晋城: 0.2 %晋城: 0.2 %本溪: 0.9 %本溪: 0.9 %杭州: 0.4 %杭州: 0.4 %桂林: 1.1 %桂林: 1.1 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.7 %沈阳: 0.7 %泸州: 0.2 %泸州: 0.2 %洛阳: 0.7 %洛阳: 0.7 %济南: 1.3 %济南: 1.3 %海东: 0.2 %海东: 0.2 %海得拉巴: 0.7 %海得拉巴: 0.7 %深圳: 0.2 %深圳: 0.2 %温州: 0.4 %温州: 0.4 %漯河: 0.4 %漯河: 0.4 %绍兴: 1.1 %绍兴: 1.1 %芒廷维尤: 37.8 %芒廷维尤: 37.8 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.4 %苏州: 0.4 %襄阳: 0.2 %襄阳: 0.2 %西宁: 5.4 %西宁: 5.4 %运城: 0.4 %运城: 0.4 %连云港: 1.3 %连云港: 1.3 %邵阳: 0.2 %邵阳: 0.2 %郑州: 0.9 %郑州: 0.9 %重庆: 5.7 %重庆: 5.7 %长沙: 3.5 %长沙: 3.5 %阿坝: 0.4 %阿坝: 0.4 %青岛: 0.9 %青岛: 0.9 %黄石: 0.4 %黄石: 0.4 %其他ChinaKao-sung[]上海东莞乌鲁木齐佛山兰州北京北方邦华盛顿南京南宁南昌台州合肥吉隆坡呼和浩特喀什天津太原孝感宝鸡巴音郭楞广州张家口扬州拉贾斯坦邦无锡昆明晋城本溪杭州桂林武汉沈阳泸州洛阳济南海东海得拉巴深圳温州漯河绍兴芒廷维尤芝加哥苏州襄阳西宁运城连云港邵阳郑州重庆长沙阿坝青岛黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (367) PDF downloads(32) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return