Volume 38 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
Wang P,Wang GY,Ji SZ,et al.Research advances on the application of carbon dots in wound treatment[J].Chin J Burns Wounds,2022,38(7):697-704.DOI: 10.3760/cma.j.cn501120-20210709-00242.
Citation: Wang P,Wang GY,Ji SZ,et al.Research advances on the application of carbon dots in wound treatment[J].Chin J Burns Wounds,2022,38(7):697-704.DOI: 10.3760/cma.j.cn501120-20210709-00242.

Research advances on the application of carbon dots in wound treatment

doi: 10.3760/cma.j.cn501120-20210709-00242
Funds:

General Program of National Natural Science Foundation of China 81971836

More Information
  • Chronic and infectious wound healing has always been an issue of concern in clinical and scientific research, in which bacterial infection and oxidative damage are the key factors hindering wound healing. Carbon dots, as a new material, has attracted much attention because of its unique physical and chemical properties and good biological safety. In recent years, the researches on the antibacterial property, antioxidant, and photoluminescence properties of carbon dots are more and more extensive and carbon dots have great potential in the treatment of chronic and infectious wounds. This paper reviews the research progress of carbon dots in three aspects: antibacterial, anti-oxidation and monitoring of wound infection are reviewed, and further discusses its specific mechanism, potential research direction, and application prospect.

     

  • loading
  • [1]
    WangSQ, ZhengH, ZhouL, et al.Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria[J]. Nano Lett,2020,20(7):5149-5158.DOI: 10.1021/acs.nanolett.0c01371.
    [2]
    XuXY, RayR, GuYL, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc,2004,126(40):12736-12737. DOI: 10.1021/ja040082h.
    [3]
    CuiL, RenX, SunMT, et al. Carbon dots: synthesis, properties and applications[J]. Nanomaterials (Basel),2021,11(12):3419.DOI: 10.3390/nano11123419.
    [4]
    ChahalS,MacairanJR,YousefiN,et al.Green synthesis of carbon dots and their applications[J].RSC Adv,2021,11(41):25354- 25363.DOI: 10.1039/d1ra04718c.
    [5]
    MeiL, GaoXR, ShiYM, et al. Augmented graphene quantum dot-light irradiation therapy for bacteria-infected wounds[J]. ACS Appl Mater Interfaces,2020,12(36):40153-40162.DOI: 10.1021/acsami.0c13237.
    [6]
    NieXL, JiangCY, WuSL, et al. Carbon quantum dots: a bright future as photosensitizers for in vitro antibacterial photodynamic inactivation[J/OL]. J Photochem Photobiol B,2020,206:111864(2020-03-23)[2021-07-09].https://pubmed.ncbi.nlm.nih.gov/32247250/.DOI:10.1016/j.jphotobiol.2020.111864.[published online ahead of print].
    [7]
    SunHJ, GaoN, DongK, et al.Graphene quantum dots-band-aids used for wound disinfection[J]. ACS Nano,2014,8(6):6202-6210.DOI: 10.1021/nn501640q.
    [8]
    LiangMJ, WangYB, MaK, et al. Engineering inorganic nanoflares with elaborate enzymatic specificity and efficiency for versatile biofilm eradication[J]. Small,2020,16(41):e2002348.DOI: 10.1002/smll.202002348.
    [9]
    LiYJ, HarrounSG, SuYC, et al. Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug- hesistant bacteria[J]. Adv Healthc Mater,2016,5(19):2545-2554.DOI: 10.1002/adhm.201600297.
    [10]
    JianHJ, WuRS, LinTY, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis[J]. ACS Nano,2017,11(7):6703-6716.DOI: 10.1021/acsnano.7b01023.
    [11]
    WangHJ, SongZY, GuJJ, et al. Nitrogen-doped carbon quantum dots for preventing biofilm formation and eradicating drug-resistant bacteria infection[J]. ACS Biomater Sci Eng,2019, 5(9):4739-4749. DOI: 10.1021/acsbiomaterials.9b00583.
    [12]
    XinQ, LiuQ, GengLL, et al. Chiral nanoparticle as a new efficient antimicrobial nanoagent[J]. Adv Healthc Mater,2017,6(4): 1601011.DOI: 10.1002/adhm.201601011.
    [13]
    ZhaoCF, WangXW, YuLY, et al. Quaternized carbon quantum dots with broad-spectrum antibacterial activity for the treatment of wounds infected with mixed bacteria[J]. Acta Biomater,2022,138:528-544.DOI: 10.1016/j.actbio.2021.11.010.
    [14]
    DasB, DadhichP, PalP, et al. Carbon nanodots from date molasses: new nanolights for the in vitro scavenging of reactive oxygen species[J]. J Mater Chem B,2014,2(39):6839-6847.DOI: 10.1039/c4tb01020e.
    [15]
    BankotiK, RameshbabuAP, DattaS, et al. Onion derived carbon nanodots for live cell imaging and accelerated skin wound healing[J]. J Mater Chem B,2017,5(32):6579-6592.DOI: 10.1039/c7tb00869d.
    [16]
    YangD, LiL, CaoL, et al. Green synthesis of lutein-based carbon dots applied for free-radical scavenging within cells[J]. Materials(Basel),2020,13(18):4146.DOI: 10.3390/ma13184146.
    [17]
    ZhaoSJ, LanMH, ZhuXY, et al. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical ccavenging[J]. ACS Appl Mater Interfaces,2015,7(31):17054-17060.DOI: 10.1021/acsami.5b03228.
    [18]
    JiaJ, LinB, GaoYF, et al. Highly luminescent N-doped carbon dots from black soya beans for free radical scavenging, Fe3+ sensing and cellular imaging[J]. Spectrochim Acta A Mol Biomol Spectrosc,2019,211:363-372.DOI: 10.1016/j.saa.2018.12.034.
    [19]
    DuFF, ShuangSM, GuoZH, et al. Rapid synthesis of multifunctional carbon nanodots as effective antioxidants, antibacterial agents, and quercetin nanoprobes[J]. Talanta,2020,206:120243.DOI: 10.1016/j.talanta.2019.120243.
    [20]
    DasB, PalP, DadhichP, et al. In vivo cell tracking, reactive oxygen species scavenging, and antioxidative gene down regulation by tong-term exposure of biomass-derived carbon dots[J]. ACS Biomater Sci Eng,2019,5(1):346-356.DOI: 10.1021/acsbiomaterials.8b01101.
    [21]
    GaoJ, LiuYF, JiangB, et al. Phenylenediamine-based carbon nanodots alleviate acute kidney injury via preferential renal accumulation and antioxidant capacity[J]. ACS Appl Mater Interfaces,2020,12(28):31745-31756.DOI: 10.1021/acsami.0c05041.
    [22]
    HuangGJ, LinYQ, ZhangLX, et al. Synthesis of sulfur-selenium doped carbon quantum dots for biological imaging and scavenging reactive oxygen species[J]. Sci Rep,2019,9(1):19651.DOI: 10.1038/s41598-019-55996-w.
    [23]
    LuoWQ, WangYM, LinF, et al. Selenium-doped carbon quantum dots efficiently ameliorate secondary spinal cord injury via scavenging reactive oxygen species[J]. Int J Nanomedicine,2020,15:10113-10125.DOI: 10.2147/IJN.S282985.
    [24]
    ZhangMM, ZhaoLL, DuFT, et al. Facile synthesis of cerium-doped carbon quantum dots as a highly efficient antioxidant for free radical scavenging[J]. Nanotechnology,2019,30(32):325101.DOI: 10.1088/1361-6528/ab12ef.
    [25]
    SchneiderLA, KorberA, GrabbeS, et al. Influence of pH on wound-healing: a new perspective for wound-therapy?[J]. Arch Dermatol Res,2007,298(9):413-420.DOI: 10.1007/s00403-006-0713-x.
    [26]
    DargavilleTR, FarrugiaBL, BroadbentJA, et al. Sensors and imaging for wound healing: a review[J]. Biosens Bioelectron,2013,41:30-42.DOI: 10.1016/j.bios.2012.09.029.
    [27]
    GongXJ, LuWJ, LiuY, et al. Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging[J]. J Mater Chem B,2015,3(33):6813-6819.DOI: 10.1039/c5tb00575b.
    [28]
    YuanFL, DingL, LiYC, et al. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range[J]. Nanoscale,2015,7(27):11727-11733.DOI: 10.1039/c5nr02007g.
    [29]
    WangL, LiM, LiWT, et al. Rationally designed efficient dual-mode colorimetric/fluorescence sensor based on carbon dots for detection of pH and Cu2+ ions[J]. ACS Sustainable Chem. Eng,2018,6(10):12668-12674.DOI: 10.1021/acssuschemeng.8b01625.
    [30]
    YangP, ZhuZQ, ZhangT, et al. Orange-emissive carbon quantum dots: toward application in wound pH monitoring based on colorimetric and fluorescent changing[J]. Small,2019,15(44):e1902823.DOI: 10.1002/smll.201902823.
    [31]
    ZhangQC, LiZQ, ZhangM, et al. Injectable in situ self-cross-linking hydrogels based on hemoglobin, carbon quantum dots, and sodium alginate for real-time detection of wound bacterial infection and efficient postoperative prevention of tumor recurrence[J]. Langmuir,2020,36(44):13263-13273.DOI: 10.1021/acs.langmuir.0c02219.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (383) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return